

Sujet 1 - Correction

CCINP PSI 2024 Problème 2

Un corrigé de I. Bigeard, E. Auclair et M. Laamoum

Partie I - Irréductibilité de J_{λ}

Q.30 • On a $u_0(e_j) = \begin{cases} e_{j+1} & \text{si } j \in [1, p-1] \\ 0 & \text{si } j = p \end{cases}$ donc $u_0^2(e_j) = \begin{cases} e_{j+2} & \text{si } j \in [1, p-2] \\ 0 & \text{si } j \in \{p-1, p\} \end{cases}$, et pour p = 2 on a $u_0^2(e_1) = u_0^2(e_2) = 0$.

• On en déduit en déduire :

$$J_0^2 = \begin{pmatrix} 0 & 0 & \dots & \dots & 0 \\ 0 & 0 & \ddots & & \vdots \\ 1 & 0 & \ddots & \ddots & \vdots \\ 0 & 1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 & 0 \\ 0 & \dots & 0 & 1 & 0 & 0 \end{pmatrix}$$

et $J_0^2 = 0$ si p = 2.

• Par récurrence on a $u_0^{p-1}\left(e_j\right) = \begin{cases} e_1 = e_p \\ 0 \text{ si si } j \in \llbracket 2, p \rrbracket \end{cases}$ et $u_0^p\left(e_j\right) = 0$ pour tout $j \in \llbracket 1, p \rrbracket$. Ainsi

$$J_0^{p-1} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & & \ddots & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix} \text{ et } J_0^p = 0$$

 $J_0^p = 0$ et $J_0^{p-1} \neq 0$ donc J_0 est nilpotente d'indice p.

Q31. J_{λ} est une matrice triangulaire donc ses valeurs propres sont ses éléments diagonaux. Et u_{λ} et J_{λ} ont même spectre donc

$$Sp(u_{\lambda}) = {\lambda}.$$

De plus $J_{\lambda} - \lambda I_p = J_0$ et le rang de J_0 vaut p-1 donc, par le théorème du rang :

$$dim(\ker(J_{\lambda} - \lambda I_p)) = p - (p - 1) = 1.$$

Il est clair que e_p est un vecteur non nul tel que $u_{\lambda}(e_p) = \lambda e_p$ donc

Le sous espace propre de u_{λ} associé à λ est $\operatorname{Vect}(e_p)$.

- **Q32.** On remarque que : $u_{\lambda} = u_0 + \lambda I d_{\mathbb{R}^p}$, donc $\forall X \in E$, $u_{\lambda}(X) = u_0(X) + \lambda X$. Soit V un sous espace vectoriel de \mathbb{R}^p .
 - Supposons V stable par u_{λ} . On a alors: $\forall X \in V$. $u_0(X) = u_{\lambda}(X) - X$

On a alors : $\forall X \in V$, $u_0(X) = \underbrace{u_{\lambda}(X)}_{\in V} - \underbrace{\lambda X}_{\in V}$ donc $u_0(X) \in V$.

Donc V est stable par u_0 .

- On montre de même que si V est stable par u_0 alors V est stable par u_{λ} .
- Conclusion : V est stable par u_{λ} si et seulement si V est stable par u_0 .

Q33. La matrice de u_{λ} dans la base \mathcal{B} est une matrice par blocs de la forme :

$$W = \begin{pmatrix} A \in \mathcal{M}_k(\mathbb{R}) & B \in \mathcal{M}_{p-k,k}(\mathbb{R}) \\ 0 \in \mathcal{M}_{k,p-k}(\mathbb{R}) & D \in \mathcal{M}_{p-k,p-k}(\mathbb{R}) \end{pmatrix}$$

où A est la matrice de v dans la base $(\tilde{e}_1, \ldots, \tilde{e}_k)$.

Q34. Notons P le polynôme caractéristique de u_{λ} et Q celui de v. On a pour tout réel x

$$P(x) = det(xI_p - W) = det \begin{pmatrix} xI_k - A & -B \\ & & \\ 0 & xI_{p-k} - D \end{pmatrix} = det(xI_k - A) \times det(xI_{p-k} - D) = Q(x) \times R(x).$$

 $det(xI_k - A) = Q(x)$ et R est un polynôme. le polynôme caractéristique de v divise celui de u_{λ} .

On en déduit que $Sp(v) = \{\lambda\}$. Si X est un vecteur propre de v associé à λ alors $X \in V$ et $v(X) = \lambda X$ donc $u_{\lambda}(X) = \lambda X$ donc X est est un vecteur propre de u_{λ} associé à λ . Et comme l'espace propre de u_{λ} associé à λ est de dimension 1 engendré par e_p , $X \in Vect(e_p)$. Puisque X est non nul, nécessairement

Q35. Supposons par l'absurde qu'il existe deux sous espaces vectoriels V et W de \mathbb{R}^p , stables par u_{λ} , non réduits $V \oplus W = \mathbb{R}^p$. $\hat{a} \{0\}$ et tels que

Comme ces sous espaces sont non nuls, d'après Q34., ils contiennent tous deux e_p et cela contredit le fait qu'ils soient en somme directe.

Il n'existe pas de sous espaces vectoriels V et W de \mathbb{R}^p , stables par u_{λ} , non réduits à $\{0\}$ et tels que $V \oplus W = \mathbb{R}^p$.

Partie II - Stabilité du système linéaire associé

Q36. Par hypothèse X_0 est un vecteur non nul tel que $J_{\lambda}X_0 = \lambda X_0$. La fonction \tilde{X} est bien de classe C^1 de \mathbb{R} dans \mathbb{R}^p et

$$\forall t \in \mathbb{R}, \quad \tilde{X}'(t) = \lambda e^{\lambda t} X_0 = e^{\lambda t} \lambda X_0 = e^{\lambda t} J_{\lambda} X_0 = J_{\lambda} \tilde{X}(t).$$

Donc \tilde{X} est solution particulière de (S).

Q37. Par opérations sur les fonctions de classe C^1 , la fonction φ est de classe C^1 de \mathbb{R} dans \mathbb{R}^p et

$$\forall t \in \mathbb{R}, \quad \varphi'(t) = \lambda e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} J_0^k + e^{\lambda t} \sum_{k=1}^{p-1} \frac{t^{k-1}}{(k-1)!} J_0^k.$$

Par ailleurs, $J_{\lambda} = J_0 + \lambda I_p$ done

$$\forall t \in \mathbb{R}, \quad J_{\lambda}\varphi(t) = e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} J_0^{k+1} + \lambda e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} J_0^k = e^{\lambda t} \sum_{k=1}^p \frac{t^{k-1}}{(k-1)!} J_0^k + \lambda e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} J_0^k$$

$$= e^{\lambda t} \sum_{k=1}^{p-1} \frac{t^{k-1}}{(k-1)!} J_0^k + \lambda e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} J_0^k \quad \text{car, avec } \mathbf{Q30.}, \quad J_0^p = 0_p.$$

Finalement:

$$\forall t \in \mathbb{R}, \quad \varphi'(t) = J_{\lambda}\varphi(t) = J_{\lambda}\exp(tJ_{\lambda})$$

Comme $J_{\lambda} = J_0 + \lambda I_p$ commute avec J_0 , J_{λ} commute aussi avec $\exp(tJ_{\lambda})$ et

$$\forall t \in \mathbb{R}, \quad \varphi'(t) = J_{\lambda} \exp(tJ_{\lambda}) = \exp(tJ_{\lambda})J_{\lambda}.$$

Q38. D'après **Q30.**, $\forall k \ge p$, $J_0^k = 0_p$.

Donc on peut écrire $\forall t \in \mathbb{R}$, $\exp(tJ_{\lambda}) = e^{\lambda t} \sum_{k=0}^{+\infty} \frac{t^k}{k!} J_0^k$ et cette somme est en fait une somme finie.

On a aussi:

$$\forall t \in \mathbb{R}, \quad \exp(-tJ_{\lambda}) = e^{-\lambda t} \sum_{k=0}^{+\infty} \frac{(-t)^k}{k!} J_0^k.$$

On peut donc calculer en manipulant en réalité des sommes finies :

$$\forall t \in \mathbb{R}, \quad \exp(tJ_{\lambda}) \times \exp(-tJ_{\lambda}) = \sum_{k=0}^{+\infty} \sum_{\ell=0}^{k} \left(\frac{t^{\ell}}{\ell!} J_0^{\ell} \frac{(-t)^{k-\ell}}{(k-\ell)!} J_0^{k-\ell} \right) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} \left(\sum_{\ell=0}^{k} {k \choose \ell} (-1)^{k-\ell} \right) J_0^k$$

$$= \sum_{k=0}^{+\infty} \frac{t^k}{k!} (1 + (-1))^k J_0^k$$

 $=I_p$ car les termes autres que pour k=0 sont nuls.

On en conclut que, pour tout réel t, $la matrice <math>\exp(tJ_{\lambda})$ est inversible d'inverse $\exp(-tJ_{\lambda})$.

Q39. Soit $X : \mathbb{R} \longrightarrow \mathbb{R}^p$ et $Y : t \longmapsto \exp(-tJ_{\lambda})X(t)$. On a donc, par **Q38.**, $X : t \longmapsto \exp(tJ_{\lambda})Y(t)$. La fonction φ étant de classe C^1 sur \mathbb{R} , on déduit que X est de classe C^1 sur \mathbb{R} si et seulement si Y est de classe C^1 sur \mathbb{R} .

Supposons donc X est de classe C^1 sur $\mathbb R$. Alors Y est de classe C^1 sur $\mathbb R$ et , par $\mathbf Q37.$:

$$\forall t \in \mathbb{R}, \quad Y'(t) = -\varphi'(-t)X(t) + \varphi(-t)X'(t)$$

$$= -\exp(-tJ_{\lambda})J_{\lambda}X(t) + \exp(-tJ_{\lambda})X'(t)$$

$$= \exp(-tJ_{\lambda})(X'(t) - J_{\lambda}X(t)).$$

- Si X est solution de (S), on a donc $\forall t \in \mathbb{R}$, Y'(t) = 0, et comme \mathbb{R} est un intervalle, Y est constante sur \mathbb{R} .
- Si Y est constante sur \mathbb{R} alors $\forall t \in \mathbb{R}$, $\exp(-tJ_{\lambda})(X'(t) J_{\lambda}X(t)) = 0$. Comme la matrice $\exp(-tJ_{\lambda})$ est inversible, on obtient $\forall t \in \mathbb{R}$, $X'(t) J_{\lambda}X(t) = 0$ et X est solution de (S).
- Conclusion : X est solution de (S) si et seulement si Y est constante sur \mathbb{R} .

Or Y est constante sur \mathbb{R} si et seulement si il existe $X_0 \in E$ tel que $\forall t \in \mathbb{R}$, $Y(t) = X_0$. Ce qui précède et **Q38.** permettent de conclure que

$$X$$
 est solution de (S) si et seulement si $\exists X_0 \in E / \forall t \in \mathbb{R}, \quad X(t) = \exp(tJ_\lambda)X_0.$

Q40. On suppose $\lambda > 0$.

Prenons $X_0 = e_p$. On a alors : $J_0 X_0 = 0$ et $\forall k \in \mathbb{N}^*$, $J_0^k X_0 = 0$ mais $J_0^0 X_0 = X_0$. Donc

$$\forall t \in \mathbb{R}, \quad X(t) = \exp(tJ_{\lambda})X_0 = e^{\lambda t}X_0 = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ e^{\lambda t} \end{pmatrix}.$$

D'après Q39., X est solution de (S) et comme $\lambda > 0$, cette solution n'est pas bornée sur \mathbb{R}_+ .

Si $\lambda > 0$, (S) admet une solution non bornée sur \mathbb{R}_+ .

Q41. Soit $A \in \mathcal{M}_p(\mathbb{R})$ et $X \in E$.

Alors
$$AX = \begin{pmatrix} y_1 \\ \vdots \\ y_p \end{pmatrix}$$
 avec $\forall i \in [1, p], \quad y_i = \sum_{j=1}^p a_{ij} x_j. \text{ Donc } ||AX||^2 = \sum_{i=1}^p y_i^2 = \sum_{i=1}^p \left(\sum_{j=1}^p a_{ij} x_j\right)^2.$

À i fixé, l'inégalité de Cauchy-Schwarz appliquée dans \mathbb{R}^p donne

$$\left(\sum_{j=1}^{p} a_{ij} x_{j}\right)^{2} \leqslant \left(\sum_{j=1}^{p} a_{ij}^{2}\right) \left(\sum_{j=1}^{p} x_{j}^{2}\right) \leqslant \left(\sum_{j=1}^{p} a_{ij}^{2}\right) ||X||^{2}.$$

On en déduit :

$$||AX||^2 \le ||X||^2 \sum_{i=1}^p \left(\sum_{j=1}^p a_{ij}^2\right) \le ||X||^2 (N(A))^2.$$

Ainsi, comme on a des nombres positifs:

$$\forall A \in \mathcal{M}_p(\mathbb{R}), \quad \forall X \in E, \quad ||AX|| \leq N(A)||X||.$$

Considérons ensuite $\lambda < 0$ et une solution X de (S). D'après **Q39.**, il existe $X_0 \in E$ tel que $\forall t \in \mathbb{R}$, $X(t) = \exp(tJ_{\lambda})X_0$. Donc, par ce qui précède et comme N est une norme :

$$\forall t \in \mathbb{R}_+, \quad ||X(t)|| \leqslant N(\exp(tJ_\lambda))||X_0|| \leqslant e^{\lambda t} N\left(\sum_{k=0}^{p-1} \frac{t^k}{k!} J_0^k\right) ||X_0|| \leqslant ||X_0|| e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} N(J_0^k).$$

Comme $\lambda < 0$, $\lim_{t \to +\infty} ||X_0|| e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} N(J_0^k) = 0$.

De plus, la fonction $\left(t \longmapsto |X_0||e^{\lambda t} \sum_{k=0}^{p-1} \frac{t^k}{k!} N(J_0^k)\right)$ est continue sur \mathbb{R}_+ , donc bornée sur \mathbb{R}_+ .

Si $\lambda < 0$ alors toutes les solutions de (S) sont bornées sur \mathbb{R}_+ .

Q42. Supposons à présent $\lambda = 0$. D'après **Q30.** :

$$\forall t \in \mathbb{R}_{+}, \quad \exp(tJ_{0}) = \begin{pmatrix} 1 & 0 & \dots & 0 \\ t & 1 & \ddots & \vdots \\ \frac{t^{2}}{2!} & t & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & 0 \\ \frac{t^{p-1}}{(p-1)!} & \dots & \dots & \frac{t^{2}}{2!} & t & 1 \end{pmatrix}.$$

Prenons $X_0 \in E$ et $X: t \longmapsto \exp(tJ_\lambda)X_0$ une solution de (S) On déduit de la matrice ci-dessus :

Si X_0 est un vecteur de $Vect(e_p)$ alors X est bornée, et sinon, X n'est pas bornée.