

Programme de Colles

Semaine 21

du 17 au 21 mars

Vade Mecum: Thèmes 1, 2, 3, 6, 7, 8, 9, 11, 12, 13, 14 et 15.

Normes sur un espace vectoriel : révisions

Suites d'un espace vectoriel normé de dimension finie : révisions

Éléments de topologie :

- 1. Parties ouvertes:
 - (a) point intérieur, intérieur, partie ouverte.
 - (b) Propriétés : l'intersection finie de parties ouvertes est ouverte, la réunion quelconque de parties ouvertes est ouverte.
- 2. Parties fermées:
 - (a) point adhérent, caractérisation séquentielle.
 - (b) adhérence, partie fermée, caractérisation séquentielle.
 - (c) propriétés : l'intersection quelconque de parties fermées est fermée, la réunion finie de parties fermées est fermée.
- 3. Une partie est fermée si et seulement si son complémentaire est ouvert.
- 4. Frontière d'une partie.
- 5. Parties denses (définition et caractérisations).
- 6. Invariance de ces différentes notions par normes équivalentes.

Etude locale d'une application :

On se limite toujours au cas de la dimension finie.

- 1. Limites, propriétés, indépendance du choix de la norme, caractérisation de la convergence à l'aide des fonctions coordonnées.
- 2. Continuité, opérations, caractérisation de la continuité à l'aide des fonctions coordonnées. Caractérisation séquentielle.
- 3. Si $f: E \longrightarrow F$ est continue, alors l'image réciproque d'un intervalle ouvert (resp. fermé) par f est un ouvert (resp. fermé).
- 4. Théorème des bornes atteints c'est-à-dire image continue d'une partie fermée bornée (toujours en dimension finie)
- 5. Applications lipschitziennes (définition, composition), lipschitzienne \Longrightarrow continue.
- 6. Continuité des fonctions polynômiales, des applications linéaires (elles sont lipschitziennes en dimension finie), des applications multi-linéaires.

Attention : la norme subordonnée n'est pas au programme, mais on peut l'aborder en exercices.

Équations différentielles :

- 1. Equations différentielles linéaires scalaires d'ordre 1: ay' + by = c: définition, théorème de Cauchy-Lipschitz, interprétation graphique, structure des solutions, variation de la constante, raccordements des solutions.
- 2. Équations d'ordre 2 à coefficients constants (cf Vade Mecum). Recherche de solutions particulières quand le second membre est de la forme $P(x)e^{\alpha x}$, $\cos(\omega t)$ ou $\sin(\omega t)$.
- 3. Équations différentielles linéaires d'ordre 2 : définition théorème de Cauchy-Lipschitz, structure des solutions (équation homogène ou pas). Exemple de recherche de solutions développables en série entière, exemple de résolution par la méthode de Lagrange (variation d'une seule constante).

Fonctions de plusieurs variables :

Il s'agit ici d'étudier les fonctions définies sur $A \subset \mathbb{R}^p$ et à valeurs dans $|\mathbb{R}|$

1. Ensemble de définition, applications partielles, continuité.

Exercices à connaître :

Niveau 1:

(E1): Résolution d'une équation différentielle du type $ay'' + by' + cy = P(x)e^{\alpha x}$ (a, b, c constants).

(E1): Trouver les fonctions puissances solutions de (\mathcal{E}_0) : $x^2y'' + xy' - y = 0$. En déduire l'ensemble des solutions de (\mathcal{E}) : $x^2y'' + xy' - y = x^2$ sur \mathbb{R}_+^* et sur \mathbb{R}_-^* .

(E1): On considère la fonction $g: \begin{cases} (x,y) & \longmapsto & \frac{xy}{\sqrt{x^2+y^2}} \text{ si } (x,y) \neq (0,0) \\ (0,0) & \longmapsto & 0 \end{cases}$

Montrer que de g est continue sur \mathbb{R}^2 .

(E1): On considère la fonction h: $\begin{cases} (x,y) & \longmapsto & \frac{xy}{x^2+y^2} \text{ si } (x,y) \neq (0,0) \\ (0,0) & \longmapsto & 0 \end{cases}$

Montrer que les applications partielles de h en (0,0) sont continues en 0 mais que h n'est pas continue en (0,0).

Niveau 2:

(E2): Montrer que la boule B(a,r) est une partie ouverte.

(E2): On munit \mathbb{R} de sa norme usuelle (la valeur absolue). Montrer que l'ensemble des rationnels \mathbb{Q} est dense dans \mathbb{R} .

(E2): Soit (\mathcal{E}) l'équation différentielle xy'' + 2y' - xy = 0.

Trouver les solutions f de (\mathcal{E}) développables en série entière au voisinage de 0 et telles que f(0) = 1, puis exprimer f à l'aide des fonctions usuelles.

Niveau 3:

(E3): (long) On se donne une norme $X \mapsto ||X|| \text{ sur } \mathcal{M}_{n,1}(\mathbb{R})$ et on définit la fonction $N \text{ sur } \mathcal{M}_n(\mathbb{R})$ par

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \qquad N(A) = \sup_{\|X\| \le 1} \|AX\|.$$

Justifier l'existence de N(A) et montrer que N définit une norme sur $\mathcal{M}_n(\mathbb{R})$.

(E3): Avec les notations précédentes, montrer aussi que $N(AB) \leq N(A)N(B)$.

(E3): On munit $\mathcal{M}_n(\mathbb{R})$ d'une norme usuelle. Montrer que $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$

Semaine 22 : Équations différentielles + Fonctions de plusieurs variables (début).