

Devoir non surveillé 7 - Correction

Exercice 1

1. On développe suivant la première ligne.

$$D_{n} = (1+x^{2})D_{n-1} - (-x) \begin{vmatrix} -x & -x & 0 & \cdots & 0 \\ 0 & 1+x^{2} & \ddots & \ddots & \vdots \\ 0 & -x & \ddots & -x & 0 \\ \vdots & \ddots & \ddots & 1+x^{2} & -x \\ 0 & \cdots & 0 & -x & 1+x^{2} \end{vmatrix}.$$

Dans le dernier terme, on développe suivant la première colonne. On obtient : $D_n = (1+x^2)D_{n-1} + x(-x)D_{n-2}$.

$$\forall n \ge 3, \ D_n = (1 + x^2)D_{n-1} - x^2D_{n-2}.$$

2. Le calcul donne $D_1 = 1 + x^2$ et $D_2 = (1 + x^2)^2 - x^2$. Et donc, en choisissant $D_0 = 1$, on a bien :

$$D_2 = (1 + x^2)D_1 - x^2D_0.$$

3. Pour $n \in \mathbb{N}^*$, on pose $u_n = D_n - D_{n-1}$. On sait que pour tout $n \ge 2$, on a : $D_n = (1 + x^2)D_{n-1} - x^2D_{n-2}$. Et donc :

$$u_n = D_n - D_{n-1} = x^2(D_{n-1} - D_{n-2}) = x^2u_{n-1}.$$

La suite $(u_n)_{n\in\mathbb{N}^*}$ est géométrique de raison x^2 donc, puisque $u_1=D_1-D_0=x^2$, on a :

$$\forall n \in \mathbb{N}^*, \quad u_n = x^{2(n-1)}u_1 = x^{2n}.$$

4. On a donc pour tout $k \in \mathbb{N}^*$:

$$D_k - D_{k-1} = x^{2k}.$$

On ajoute ces égalités pour k=1 à n. La somme est télescopique. Il reste :

$$\sum_{k=1}^{n} (D_k - D_{k-1}) = D_n - D_0 = \sum_{k=1}^{n} x^{2k}.$$

- si $x = \pm 1$ alors $x^2 = 1$ et donc $\forall n \in \mathbb{N}, D_n = n + 1$.
- si $x \neq \pm 1$ alors $x^2 \neq 1$ et donc $\forall n \in \mathbb{N}$, $D_n = \sum_{k=1}^n x^{2k} + 1 = \sum_{k=0}^n x^{2k} = \frac{1 x^{2(n+1)}}{1 x^2}$

Problème 1

- 1. Un exemple dans \mathbb{R}^3 .

 - (a) Le calcul donne $M^2 = \frac{1}{2}(M + I_3)$ donc $f^2 = f \circ f = \frac{1}{2}(f + I_E)$. (b) On a $\det(f) = \det(M) = \frac{1}{8} \begin{vmatrix} -1 & 3 & -3 \\ 3 & -1 & 3 \\ 3 & -3 & 5 \end{vmatrix} = \frac{1}{8} \begin{vmatrix} 2 & 3 & 0 \\ 2 & -1 & 2 \\ 0 & -3 & 2 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 1 & 3 & 0 \\ 1 & -1 & 1 \\ 0 & -3 & 1 \end{vmatrix} = -\frac{1}{2}$. (c) Ker $(f I_E)$ est un plan d'équation x y + z = 0. On peut donc choisir $e_1 = (1, 1, 0)$ et $e_2 = (0, 1, 1)$.
 - Le calcul donne aussi $\operatorname{Ker}\left(f+\frac{1}{2}I_{E}\right)=\operatorname{Vect}\{(-1,1,1)\}$. Prenons $e_{3}=(-1,1,1)$.
 - (d) On a $\begin{vmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = -1 \neq 0 \text{ donc } \mathcal{B}' = (e_1, e_2, e_3) \text{ est une base de } E.$

Et la matrice de passage P de \mathcal{B} à \mathcal{B}' est $P = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$.

Par choix de e_1, e_2 dans $\operatorname{Ker}(f - I_E)$, on a $f(e_1) = e_1$ et $f(e_2) = e_2$. De même, $e_3 \in \operatorname{Ker}\left(f + \frac{1}{2}I_E\right)$ donc $f(e_3) = -\frac{1}{2}e_3$.

Par conséquent, on obtient $M' = P^{-1}MP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1/2 \end{pmatrix}$.

2. Supposons que $f = \alpha I_E$. On a les équivalences suivantes.

$$f^2 = \frac{1}{2}(f + I_E)$$
 \iff $\alpha^2 I_E = \frac{1}{2}(\alpha I_E + I_E)$

$$\iff$$
 $2\alpha^2 - \alpha - 1 = 0 \iff \alpha = 1 \text{ ou } \alpha = -\frac{1}{2}$

- 3. On revient au cas général.
 - (a) On a $f^2 = \frac{1}{2}(f + I_E)$ et donc $2f^2 f = I_E$ d'où $f \circ (2f I_E) = I_E$ et $(2f I_E) \circ f = I_E$. Par suite:

$$f$$
 est inversible et $f^{-1} = 2f - I_E$.

(b) Montrons que $E = \operatorname{Ker}\left(f + \frac{1}{2}I_E\right) \oplus \operatorname{Ker}(f - I_E)$.

Analyse: Soit $x \in E$. Supposons connaître $u \in \text{Ker}\left(f + \frac{1}{2}I_E\right)$ et $v \in \text{Ker}(f - I_E)$ tels que x = u + v. On a donc $f(u) = -\frac{1}{2}u$ et f(v) = v. Et donc :

$$x = u + v$$

 $f(x) = f(u) + f(v) = -\frac{1}{2}u + v$

2

Ainsi $v = \frac{1}{3}(x + 2f(x))$ et $u = \frac{2}{3}(x - f(x))$.

Si u et v existent, ils sont **uniquement** définis par ces égalités.

Synthèse : Vérifions que u et v conviennent.

•
$$u + v = \frac{2}{3}(x - f(x)) + \frac{1}{3}(x + 2f(x)) = x$$
.

•
$$f(u) = \frac{2}{3}(f(x) - f^2(x)) = \frac{2}{3}f(x) - \frac{2}{3}\frac{1}{2}(f(x) + x) = \frac{1}{3}(f(x) - x) = -\frac{1}{2}u \text{ donc } u \in \text{Ker}\left(f + \frac{1}{2}I_E\right).$$

•
$$f(v) = \frac{1}{3}(f(x) + 2f^2(x)) = \frac{1}{3}(f(x) + f(x) + x) = v \text{ donc } v \in \text{Ker}(f - I_E).$$

Conclusion : On a démontré que pour tout $x \in E$:

$$\exists ! u \in \operatorname{Ker}\left(f + \frac{1}{2}I_E\right), \quad \exists ! v \in \operatorname{Ker}(f - I_E), \quad x = u + v$$

C'est la définition de
$$E = \operatorname{Ker}\left(f + \frac{1}{2}I_E\right) \oplus \operatorname{Ker}(f - I_E).$$

(c) On a
$$\left(f + \frac{1}{2}I_E\right) \circ (f - I_E) = f^2 - \frac{1}{2}f - \frac{1}{2}I_E = 0$$
 donc

$$\operatorname{Im}(f - I_E) \subset \operatorname{Ker}\left(f + \frac{1}{2}I_E\right).$$

Mais par la formule du rang, $\dim(\operatorname{Im}(f - I_E)) = \dim(E) - \dim(\operatorname{Ker}(f - I_E))$.

Et puisque
$$E = \operatorname{Ker}\left(f + \frac{1}{2}I_E\right) \oplus \operatorname{Ker}(f - I_E)$$
, on a aussi $\operatorname{dim}\operatorname{Ker}\left(f + \frac{1}{2}I_E\right) = \operatorname{dim}(E) - \operatorname{dim}\operatorname{Ker}(f - I_E)$).

Finalement, on a bien
$$\operatorname{Ker}\left(f+\frac{1}{2}I_{E}\right)=\operatorname{Im}(f-I_{E}).$$

(d) On a
$$(f - I_E) \circ \left(f + \frac{1}{2}I_E\right) = f^2 - \frac{1}{2}f - \frac{1}{2}I_E = 0 \text{ donc}$$
: $\operatorname{Im}\left(f + \frac{1}{2}I_E\right) \subset \operatorname{Ker}(f - I_E)$.

Et comme précédemment, on montrerait que ces deux sous-espaces ont même dimension, et donc ils sont égaux.

$$\operatorname{Ker}(f - I_E) = \operatorname{Im}\left(f + \frac{1}{2}I_E\right).$$

- 4. On suppose désormais que les endomorphismes f et I_E sont linéairement indépendants.
 - (a) On a $f^3 = f \circ f^2 = f \circ \frac{1}{2}(f + I_E) = \frac{1}{2}(f^2 + f) = \frac{3}{4}f + \frac{1}{4}I_E$.

Et de même, $f^4 = f \circ f^3 = \frac{3}{4}f^2 + \frac{1}{4}f = \frac{5}{8}f + \frac{3}{8}I_E$. (b) **Unicité**: Si $f^n = a_n f + b_n I_E = a'_n f + b'_n I_E$ alors $(a_n - a'_n)f + (b_n - b'_n)I_E = 0$. Et comme f et I_E sont linéairement indépendantes, on a : $a_n - a'_n = b_n - b'_n = 0$, c'est-à-dire : $a_n = a'_n$ et $b_n = b'_n$.

Existence: par récurrence sur n.

Pour n = 0, $a_0 = 0$ et $b_0 = 1$ conviennent.

Pour n = 1, $a_0 = 1$ et $b_0 = 0$ conviennent.

Supposnons la propriété vraie au rang $n \in \mathbb{N}$. On a donc : $f^n = a_n f + b_n I_E$. Ainsi :

$$f^{n+1} = f \circ f^n = a_n f^2 + b_n f = \left(\frac{a_n}{2} + b_n\right) f + \frac{a_n}{2} I_E = a_{n+1} f + b_{n+1} I_E,$$

avec $a_{n+1} = \frac{a_n}{2} + b_n$ et $b_{n+1} = \frac{a_n}{2}$.

(c) On a
$$a_{n+1} = \frac{\ddot{a}_{n+1}}{2} + b_{n+1} = \frac{a_{n+1}^2}{2} + \frac{a_n}{2}$$
 (suite récurrente linéaire d'ordre 2).

L'équation caractéristique associée est $2r^2-r-1=(2r-1)(r+1/2)=0$. Et donc, il existe $(A,B)\in\mathbb{R}^2$ tels que

$$\forall n \in \mathbb{N}, \qquad a_n = A.1^n + B\left(-\frac{1}{2}\right)^n.$$

Avec $a_0 = 0$ et $a_1 = 1$, on trouve facilement $\forall n \in \mathbb{N}, \ a_n = \frac{2}{3} - \frac{2}{3} \left(-\frac{1}{2} \right)^n$.

Et donc $\lim_{n \to +\infty} a_n = \frac{2}{3}$.

(d) Puisque $b_{n+1} = \frac{a_n}{2}$, on a pour tout $n \ge 1$: $b_n = \frac{a_{n-1}}{2} = \frac{1}{3} - \frac{1}{3} \left(-\frac{1}{2}\right)^{n-1}$. Et cette égalité est encore valable pour n = 0.

Et finalement, $\lim_{n \to +\infty} b_n = \frac{1}{3}$.

(e) On convient d'appeler limite de la suite d'endomorphismes $(f^n)_{n\in\mathbb{N}}$ l'endomorphisme $p=\frac{2}{3}f+\frac{1}{3}I_E$.

On a
$$p \circ p = \left(\frac{2}{3}f + \frac{1}{3}I_E\right) \circ \left(\frac{2}{3}f + \frac{1}{3}I_E\right) = \frac{4}{9}f^2 + \frac{4}{9}f + \frac{1}{9}I_E = \frac{2}{3}f + \frac{1}{3}I_E = p.$$

Donc p est un projecteur, et en particulier, p est la projection sur $\text{Im}(p) = \text{Ker}(p - I_E)$ dans la direction de $\text{Ker}(p) = \text{Im}(p - I_E)$.

Or on a
$$p - I_E = \frac{2}{3}f + \frac{1}{3}I_E - I_E = \frac{2}{3}(f - I_E)$$
. Donc

p est la projection vectorielle sur $Ker(f - I_E)$ dans la direction de $Im(f - I_E)$.

Problème 2

Le groupe symplectique

1. — Tous les blocs qui interviennent dans ce qui suit sont carrés d'ordre n, donc les produits par blocs sont possibles.

On trouve de suite que $J^2 = \begin{pmatrix} -I_n & 0_n \\ 0_n & -I_n \end{pmatrix} = -I_{2n}$, et que $J^T = -J$.

- La relation $J^2 = -I_{2n}$ garantit que J est inversible et que son inverse est -J.
- 2. On a alors

$$J^T J J = J^{-1} J J = J$$

ce qui montre que $J \in \mathcal{S}_{p_{2n}}$. Un calcul par blocs donne

$$K(\alpha)^T J K(\alpha) = \begin{pmatrix} I_n & -\alpha I_n \\ 0_n & I_n \end{pmatrix} \begin{pmatrix} \alpha I_n & -I_n \\ I_n & 0 \end{pmatrix} = \begin{pmatrix} 0_n & -I_n \\ I_n & 0_n \end{pmatrix} = J$$

ce qui justifie que $K(\alpha) \in \mathcal{S}_{p_{2n}}$.

3. Un calcul par blocs donne (les opérations de transposition et de passage à l'inverse commutent)

$$L_U^T J L_U = \left(\begin{array}{cc} U^T & \mathbf{0}_n \\ \mathbf{0}_n & U^{-1} \end{array} \right) \left(\begin{array}{cc} \mathbf{0}_n & -(U^T)^{-1} \\ U & \mathbf{0}_n \end{array} \right) = \left(\begin{array}{cc} \mathbf{0}_n & -I_n \\ I_n & 0 \end{array} \right) = J$$

ce qui montre que $L_U \in \mathcal{S}_{p_{2n}}$.

4. On suppose $M^T J M = J$. En passant au déterminant, on obtient :

$$\det(M^T)\det(J)\det(M) = \det(M)^2\det(J) = \det(J)$$

Comme J est inversible, det(J) est non nul et donc

$$\det(M) \in \{1, -1\}$$

- 5. Soit M et N deux éléments de Sp_{2n} .
 - M et N sont donc deux éléments de \mathcal{M}_{2n} , donc leur produit est défini et élément de \mathcal{M}_{2n} .
 - Par appartenance de M puis N à $Sp_{2n}(MN)^T J(MN) = N^T (M^T JM) N = N^T JN = J$.
 - Finalement, $MN \in \mathcal{S}p_{2n}$
- 6. Un élément de $S_{p_{2n}}$ a un déterminant non nul (de valeur ± 1) et est donc inversible. Si $M \in S_{p_{2n}}$, on a $M^T J M = J$. Multiplions par M^{-1} à gauche et par $(M^T)^{-1}$ à droite; on a alors

$$J = (M^T)^{-1}JM^{-1} = (M^{-1})^TJM^{-1}$$

et donc $M^{-1} \in \mathcal{S}_{p_{2n}}$.

7. Si $M \in \mathcal{S}p_{2n}$, $M^TJM = J$, donc, $MJM^TJM = MJ^2 = -M$.

Puisque M est inversible, on a $MJM^TJ = -I_{2n}$. Et en multipliant à droite par J, on trouve $MJM^TJ^2 = -J$. En remplaçant J^2 par $-I_{2n}$ et en multipliant par -1, $M^TJM = J$, donc $M^T \in \mathcal{S}p_{2n}$.

8. Un produit par blocs donne

$$M^T J M = \begin{pmatrix} -A^T C + C^T A & -A^T D + C^T B \\ -B^T C + D^T A & -B^T D + D^T B \end{pmatrix}$$

et $M \in \mathcal{S}_{p_{2n}}$ si et seulement si

$$-A^{T}C + C^{T}A = -B^{T}D + D^{T}B = 0_{n}$$
 et $A^{T}D - C^{T}B = -B^{T}C + D^{T}A = I_{n}$

Centre de $\mathcal{S}_{p_{2n}}$

9. I_{2n} et $-I_{2n}$ sont des éléments de $\mathcal{S}_{p_{2n}}$ (calcul immédiat) et elles commutent avec toute matrice donc, en particulier, avec toutes celles de $\mathcal{S}_{p_{2n}}$. Ainsi

$$\{I_{2n}, -I_{2n}\} \subset \mathcal{Z}$$

Récirpoquement, soit $M \in \mathcal{Z}$ écrite sous la forme

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A, B, C, D \in \mathcal{M}_n$

10. Comme $M \in \mathcal{Z}$, M commute avec $L = (K(-1))^T \in \mathcal{S}_{p_{2n}}$ (questions 2 et 7). Un calcul par blocs donne alors

$$\left(\begin{array}{cc} A & A+B \\ C & C+D \end{array}\right) = \left(\begin{array}{cc} A+C & B+D \\ C & D \end{array}\right)$$

et ainsi C=0 et A=D. Compte-tenu de ces relations, $L^TM=ML^T$ (qui a lieu puisque $L^T=K(-1)\in\mathcal{S}_{p_{2n}}$), donne

$$\left(\begin{array}{cc} A+B & B \\ A & A \end{array}\right) = \left(\begin{array}{cc} A & B \\ A & A+B \end{array}\right)$$

et ainsi B=0. Enfin, comme $M\in\mathcal{S}_{p_{2n}}$, les relations de la question 8 donnent $AA^T=I_n$ c'est à dire $A\in\mathcal{O}_n\subset\mathcal{G}_n$. On a montré que

$$B = C = 0_n, \ D = A, \ A \in \mathcal{O}_n \subset \mathcal{G}_n$$

11. Soit $U \in \mathcal{G}_n$. On utilise maintenant le fait que L_U commute avec M, ce qui donne (compte tenu des relations de la question précédente)

$$\begin{pmatrix} AU & 0_n \\ 0_n & A(U^{-1})^T \end{pmatrix} = \begin{pmatrix} UA & 0_n \\ 0_n & (U^{-1})^T A \end{pmatrix}$$

et en particulier AU = UA.

- 12. Pour tout $(i, j) \in [[1, n]]^2$, $I_n + E_{ij}$ est une matrice triangulaire donc les coefficients diagonaux valent tous 1 ou 2, donc sont non nuls. Par conséquent, $I_n + E_{ij}$ est inversible.
 - Ainsi, pour tout $(i, j) \in [1, n]^2$, $(I_n + E_{ij}) \hat{A} = A(I_n + E_{ij})$, donc, en développant, $E_{ij}A = AE_{ij}$.

On explicite
$$A$$
 sous la forme $\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$.

Toutes les lignes de $E_{ij}A$ sont nulles, sauf la *i*-ième, qui est $(a_{j1} \cdots a_{jn})$.

Toutes les colonnes de AE_{ij} sont nulles, sauf la j-ième, qui vaut $\begin{pmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{pmatrix}$.

On en déduit que, pour $k \neq j$, $a_{jk} = 0$, et que $a_{jj} = a_{ii}$.

— Par conséquent, A est une matrice dont les coefficients non diagonaux sont tous nuls et les coefficients diagonaux tous, égaux, donc A est de la forme λI_n , où $\lambda \in \mathbb{R}$.

Ainsi,

$$M = \left(\begin{array}{cc} \lambda I_n & 0_n \\ 0_n & \lambda I_n \end{array}\right),\,$$

Mais, d'après Q4, le déterminant d'un élément de Sp_{2n} est 1 ou -1, donc $\lambda \in \{-1, +1\}$, donc $M \in \{-I_{2n}, I_{2n}\}$.

— On vient de démontrer que $\mathcal{Z} \subset \{-I_{2n}, I_{2n}\}$, et on a prouvé en Q9 que $\{-I_{2n}, I_{2n}\} \subset \mathcal{Z}$. Finalement : $\mathcal{Z} = \{-I_{2n}, I_{2n}\}$.

Problème 3

1. (a) Soit
$$x = \sum_{k=1}^{n} x_i e_i$$
 et $y = \sum_{k=1}^{n} y_i e_i$ deux vecteurs de E . On a par définition,

$$\forall i \in \{1, ..., n\}, \qquad e_i^*(x) = x_i \qquad \text{ et } \qquad e_i^*(y) = y_i.$$

Pour tout $\lambda, \mu \in \mathbb{R}^2$, on a $\lambda x + \mu y = \sum_{k=1}^n (\lambda x_i + \mu y_i) e_i$ et donc

$$\forall i \in \{1, \dots, n\}, \qquad e_i^*(\lambda x + \mu y) = \lambda x_i + \mu y_i = \lambda e_i^*(x) + \mu e_i^*(y).$$

Ainsi, e_i^* est linéaire et puisqu'elle prend ses valeurs dans \mathbb{R} , c'est une forme linéaire.

$$\forall i \in \{1, \dots, n\}, \quad e_i^* \in E^*.$$

(b) Puisque
$$e_j = \sum_{k=1}^n \delta_{i,j} e_i$$
, on a $\forall (i,j) \in \{1,\dots,n\}^2$, $e_i^*(e_j) = \delta_{i,j} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$

(c) Soit
$$(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$$
 tels que $\sum_{i=1}^n \lambda_i e_i^* = 0$. On a donc $\forall x \in E, \sum_{i=1}^n \lambda_i e_i^*(x) = 0$.

En particulier, pour tout
$$j \in \{1, ..., n\}$$
: $\sum_{i=1}^{n} \lambda_i e_i^*(e_j) = \lambda_j = 0.$

Ainsi, la famille (e_1^*, \dots, e_n^*) est libre et comme elle est de cardinal $n = \dim(E^*)$, on a

$$(e_1^*, \dots, e_n^*)$$
 est une base de E^* .

- 2. Si $f \in \mathcal{L}(E)$ un endomorphisme de E et si $\varphi \in E^*$ est une forme linéaire sur E, on pose ${}^T f(\varphi) = \varphi \circ f$. L'application ${}^T f$ est appelée transposée de f.
 - (a) Tout d'abord, pour tout $\varphi \in E^*$, l'application $\varphi \circ f$ est aussi dans E^* . Ainsi $^T f : E^* \longrightarrow E^*$.

Montrons que $^T f$ est linéaire. Soient $\varphi_1, \varphi_2 \in E^*$ et $\lambda_1, \lambda_2 \in \mathbb{R}$. On a

$${}^T\!f(\lambda_1\varphi_1+\lambda_2\varphi_2)=(\lambda_1\varphi_1+\lambda_2\varphi_2)\circ f=\lambda_1\varphi_1\circ f+\lambda_2\varphi_2\circ f=\lambda_1^T\!f(\varphi_1)+\lambda_2^T\!f(\varphi_2).$$

Ainsi, ${}^{T}f$ est linéaire et finalement $\overline{}^{T}f \in \mathcal{L}(E^{*})$.

(b) Tout d'abord, on vient de voir que pour tout $f \in \mathcal{L}(E)$, ${}^T f$ est un élément de $\mathcal{L}(E^*)$. Montrons que l'application $f \longrightarrow {}^T f$ est linéaire. Soient $f, g \in \mathcal{L}(E)$ et $\lambda, \mu \in \mathbb{R}$.

$$\forall \varphi \in E^*, \quad {}^{T}(\lambda f + \mu g)(\varphi) = \varphi \circ (\lambda f + \mu g) = \lambda \varphi \circ f + \mu \varphi \circ g = \lambda^{T} f(\varphi) + \mu^{T} g(\varphi).$$

Ainsi, $T(\lambda f + \mu g) = \lambda^T(f) + \mu^T(g)$ d'où la linéairité. On a montré :

$$f \in \mathcal{L}(E) \longrightarrow^T f \in \mathcal{L}(E^*)$$
 est linéaire.

(c) Soit $f \in \mathcal{L}(E)$ telle que T(f) = 0. On a donc pour tout $\varphi \in E^*, T(f) = \varphi \circ f = 0$. En particulier, avec $\varphi = e_i^*$ on obtient:

$$\forall x \in E, \ \forall i \in \{1, \dots, n\}, \quad e_i^*(f(x)) = 0$$

Et comme les $e_i^*(f(x))$ sont les coordonnées de f(x) dans la base \mathcal{B} , on obtient :

$$\forall x \in E, \ f(x) = \sum_{i=1}^{n} e_i^*(f(x))e_i = 0.$$

Ainsi, f est l'application nulle. On vient de montrer que le noyau de $f \longrightarrow^T f$ est réduit à $\{0\}$ donc

L'application
$$f \longrightarrow^T f$$
 est injective.

(d) De plus, $f \in \mathcal{L}(E) \longrightarrow^T f \in \mathcal{L}(E^*)$ et $\dim(\mathcal{L}(E)) = \dim(\mathcal{L}(E^*)) = n^2$ donc

L'application
$$f \longrightarrow^T f$$
 est bijective.

- 3. Dans cette question, on donne quelques propriétés de l'application $f \longrightarrow {}^T f$.
 - (a) Par définition, pour tout $\varphi \in E^*$, on a ${}^T Id_E(\varphi) = \varphi \circ Id_E = \varphi$ donc $\overline{}^T Id_E = {}^T Id_{E^*}$.
 - (b) Soit $(f,g) \in \mathcal{L}(E)^2$. Pour tout $\varphi \in E^*$ on a

Et donc
$$\forall (f,g) \in \mathcal{L}(E)^2$$
, $T(g \circ f) = Tf \circ Tg$.

(c) Soit f un automorphisme de E. On a donc $f \circ (f^{-1}) = (f^{-1}) \circ f = Id_E$. En appliquant les résultat précédents, on trouve :

$${}^{T}(f \circ (f^{-1})) = {}^{T}(f^{-1}) \circ {}^{T}f = {}^{T}Id_{E} = Id_{E^{*}}$$
$${}^{T}((f^{-1}) \circ f) = {}^{T}(f^{-1}){}^{T}f \circ {}^{T}(f^{-1}) = {}^{T}Id_{E} = Id_{E^{*}}$$

Et donc Tf est un automorphisme de E^* et $Tf)^{-1} = T(f^{-1})$.

4. Soit $f \in \mathcal{L}(E)$. On note M sa matrice dans la base $\mathcal{B} = (e_1, \dots, e_n)$ et N celle de T dans la base (e_1^*, \dots, e_n^*) . Par définition, la jième colonne de M est formée des coordonnées de $f(e_j)$ dans la base (e_1, \dots, e_n) et donc

$$\forall (i,j) \in \{1,\ldots,n\}^2, \quad m_{i,j} = e_i^*(f(e_j)).$$

De même, par définition, la jième colonne de N est formée des coordonnées de ${}^T f(e_j^*)$ dans la base (e_1^*, \ldots, e_n^*) .

Or pour tout forme linéaire φ on a $\varphi = \sum_{k=1}^{n} \varphi(e_i)e_i^*$. Et en particulier :

$$^{T}f(e_{j}^{*}) = e_{j}^{*} \circ f = \sum_{k=1}^{n} e_{j}^{*} \circ f(e_{i})e_{i}^{*} = \sum_{k=1}^{n} e_{j}^{*}(f(e_{i}))e_{i}^{*}.$$

Par conséquent, $n_{i,j} = e_j^*(f(e_i)) = m_{i,j}$, ce qui s'écrit $M^T = N$.