

Devoir non surveillé 6 - Correction

Exercice 1

1. Soit $P(X) = aX^2 + bX + c \in \mathbb{R}_2[X]$. On a

$$\varphi(P)(X) = (2X+4) \times (aX^2+bX+c) - (X^2+X-2) \times (2aX+b)$$

= $2aX^3 - 2aX^3 +$ termes de degré inférieur ou égal à 2

Donc, pour tout $P \in \mathbb{R}_2[X]$, on a bien $\varphi(P) \in \mathbb{R}_2[X]$.

Soient $(P,Q) \in (\mathbb{R}_2[X])^2$ et $(\lambda,\mu) \in \mathbb{R}^2$.

$$\varphi(\lambda P + \mu Q)(X) = (2X + 4)(\lambda P + \mu Q)(X) - (X^2 + X - 2)(\lambda P + \mu Q)'(X)$$

$$= \lambda((2X + 4)P(X) - (X^2 + X - 2)P'(X)) + \mu((2X + 4)Q(X) - (X^2 + X - 2)Q'(X))$$

$$= \lambda \varphi(P)(X) + \mu \varphi(Q)(X) = (\lambda \varphi(P) + \mu \varphi(Q))(X)$$

Donc φ est linéaire. Finalement, on a démontré que φ est un endomorphisme de $\mathbb{R}_2[X]$.

2. On a

$$\varphi(1) = 2X + 4,$$

$$\varphi(X) = 2X^2 + 4X - X^2 - X + 2 = X^2 + 3X + 2,$$

$$\varphi(X^2) = 2X^3 + 4X^2 - 2X^3 - 2X^2 + 4X = 2X^2 + 4X.$$

Ainsi:
$$M = \mathcal{M}_{\mathcal{B}}(\varphi) = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{pmatrix}$$
.

3. Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$. On a les équivalences suivantes.

$$X \in \text{Ker}(M) \iff MX = 0 \iff \begin{cases} 4x + 2y = 0 \\ 2x + 3y + 4z = 0 \\ y + 2z = 0 \end{cases}$$

$$\iff \begin{cases} y = -2z \\ x = z \\ 2z + 3(-2z) + 4z = 0 \end{cases}$$

$$\iff$$
 $X = z \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$

Ainsi, $\operatorname{Ker}(M) = \operatorname{Vect} \left\{ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \right\}$. On revient à l'application φ .

Le noyau de φ est $\operatorname{Ker}(\varphi) = \operatorname{Vect}\{P_0\}$ avec $P_0 = 1 - 2X + X^2 = (X - 1)^2$.

4. Par la formule du rang, on a $\operatorname{rg}(\varphi) = \dim(\mathbb{R}_2[X]) - \dim(\operatorname{Ker}(\varphi)) = 3 - 1 = 2$. De plus, $\operatorname{Im}(\varphi) = \operatorname{Vect}\{\varphi(1), \varphi(X), \varphi(X^2)\}$. Pour avoir une base de $\operatorname{Im}(\varphi)$, il suffit donc de choisir deux vecteurs linéairement indépendants parmi $\varphi(1), \varphi(X), \varphi(X^2)$. Par exemple, $\varphi(1) = 2X + 4 = 2(X + 2)$ et $\varphi(X^2) = 4X + 2X^2 = 2(2X + X^2)$.

Ainsi L'image de φ est $\text{Vect}\{P_1, P_2\}$ avec $P_1 = X + 2$ et $P_2 = 2X + X^2$.

5. Puisque (P_0) est une base de $\operatorname{Ker}(\varphi)$, et que (P_1, P_2) est une base de $\operatorname{Im}(\varphi)$, ces deux sous-espaces vectoriels de $\mathbb{R}_2[X]$ sont supplémentaires si et seulement si (P_0, P_1, P_2) est une base de $\mathbb{R}_2[X]$. Ainsi, en notant $\mathcal{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$, on a l'équivalence suivante.

$$\mathbb{R}_2[X] = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi) \iff \det_{\mathcal{B}}(P_0, P_1, P_2) \neq 0.$$

$$\det_{\mathcal{B}}(P_0, P_1, P_2) = \begin{vmatrix} 1 & 2 & 0 \\ -2 & 1 & 2 \\ 1 & 0 & 1 \end{vmatrix} = 9 \neq 0 \text{ donc } (P_0, P_1, P_2) \text{ est une base de } \mathbb{R}_2[X].$$

On a démontré que $\mathbb{R}_2[X] = \operatorname{Ker}(\varphi) \oplus \operatorname{Im}(\varphi)$.

6. φ est un projecteur de $\mathbb{R}_2[X]$ si et seulement si $\varphi \circ \varphi = \varphi$, c'est-à-dire si $M^2 = M$.

Or, on a
$$M^2 = \begin{pmatrix} 20 & 14 & 8 \\ 14 & 17 & 20 \\ 2 & 5 & 8 \end{pmatrix} \neq M$$
. Donc, φ n'est pas un projecteur.

- 7. On a déjà démontré que $\mathcal{B}' = (P_0, P_1, P_2)$ est une base de $\mathbb{R}_2[X]$. Pour écrire la matrice M' de φ dans cette base, il faut exprimer $\varphi(P_0), \varphi(P_1)$ et $\varphi(P_2)$ dans cette même base.
 - D'une part, $\varphi(P_0) = 0$.
 - D'autre part, $\varphi(P_1)$ et $\varphi(P_2)$ sont des éléments de $\operatorname{Im}(\varphi)$ donc, ils s'écrivent comme combinaisons linéaires de P_1 et P_2 .

On a
$$M \times \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 10 \\ 7 \\ 1 \end{pmatrix}$$
. Donc

$$\varphi(P_1) = 10 + 7X + X^2 = aP_1 + bP_2 \iff 10 + 7X + X^2 = 2a + (a+2b)X + bX^2 \iff a = 5 \text{ et } b = 1$$

Donc $\varphi(P_1) = 5P_1 + P_2$. De même, on a $M \times \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 10 \\ 4 \end{pmatrix}$. Donc

$$\varphi(P_2) = 4 + 10X + X^2 = cP_1 + dP_2$$
 \iff $4 + 10X + 4X^2 = 2c + (c + 2d)X + dX^2$ \iff $c = 2 \text{ et } d = 4$

Donc $\varphi(P_2) = 2P_1 + 4P_2$.

Ainsi, la matrice de φ dans la base \mathcal{B}' est $M' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 1 & 4 \end{pmatrix}$.

Autre méthode : On aurait pu aussi utiliser les formules de changement de base. Si on note P la matrice passage de \mathcal{B} à \mathcal{B}' , alors $M' = P^{-1}MP$. Avec notre choix de (P_0, P_1, P_2) , on a

$$P = \begin{pmatrix} 1 & 2 & 0 \\ -2 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix} \qquad \text{et} \qquad P^{-1} = \frac{1}{9} \begin{pmatrix} 1 & -2 & 4 \\ 4 & 1 & -2 \\ -1 & 2 & 5 \end{pmatrix}.$$

Par le calcul, on retrouve $M' = P^{-1}MP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5 & 2 \\ 0 & 1 & 4 \end{pmatrix}$.

Exercice 2

1. $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont des parties non vides $\mathcal{M}_n(\mathbb{R})$ puisqu'elles contiennent 0 (matrice nulle). De plus, si $M, N \in \mathcal{S}_n(\mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$, alors :

$$(\lambda M + \mu N)^T = \lambda M^T + \mu N^T = \lambda M + \mu N$$

donc $\lambda M + \mu N \in \mathcal{S}_n(\mathbb{R})$.

De même, si $M, N \in \mathcal{A}_n(\mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$, alors :

$$(\lambda M + \mu N)^T = \lambda M^T + \mu N^T = -(\lambda M + \mu N)$$

donc $\lambda M + \mu N \in \mathcal{A}_n(\mathbb{R})$.

Ainsi, $\mathcal{S}_n(\mathbb{R})$ et $\mathcal{A}_n(\mathbb{R})$ sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$.

D'autre part, si l'on note $(E_{i,j})_{i,j\in[1,n]}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$, par définition des coefficients d'une matrice :

$$A = [a_{i,j}]_{i,j \in [1,n]} = \sum_{i,j \in [1,n]} a_{i,j} E_{i,j}.$$

Et on a les équivalences suivantes.

$$A \in \mathcal{S}_n(\mathbb{R}) \iff \forall i, j \in [1, n], \ a_{i,j} = a_{j,i}$$

$$\iff$$
 $A = \sum_{i=1}^{n} a_{i,i} E_{i,i} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i,j} (E_{i,j} + E_{i,j})$

Et donc la famille $\mathcal{B}_1 = (E_{i,i})_{i \in [1,n]} \bigcup (E_{i,j} + E_{i,j})_{1 \le i < j \le n}$ est une famille génératrice de $\mathcal{S}_n(\mathbb{R})$.

Elle est libre, car si $\sum_{i=1}^{n} a_{i,i} E_{i,i} + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{i,j} (E_{i,j} + E_{i,j}) = 0$ alors tous les $a_{i,j}$ sont nuls.

C'est donc une base de $S_n(\mathbb{R})$.

On a en enfin,
$$\dim(\mathcal{S}_n(\mathbb{R})) = \operatorname{card}(\mathcal{B}_1) = n + (n-1) + \dots + 2 + 1 = \frac{n(n+1)}{2}$$
.

Par un raisonnement analogue, on montrerait que $\mathcal{B}_2 = (E_{i,j} - E_{i,j})_{1 \leq i < j \leq n}$ est une base de $\mathcal{A}_n(\mathbb{R})$ et donc que $\dim(\mathcal{A}_n(\mathbb{R})) = \operatorname{card}(\mathcal{B}_2) = (n-1) + \cdots + 2 + 1 = \frac{n(n-1)}{2}$.

2. On pourrait faire un raisonnement par analyse et synthèse. Mais connaissant le résultat de la question 1, ce n'est pas la résolution la plus rapide...

Soit $M \in \mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R})$. On a donc ${}^tM = M$ et ${}^tM = -M = -{}^tM$ donc ${}^tM = 0$, c'est-à-dire M = 0. Ainsi, $\mathcal{S}_n(\mathbb{R}) \cap \mathcal{A}_n(\mathbb{R}) = \{0, \}$ et comme

$$\dim(\mathcal{S}_n(\mathbb{R})) + \dim(\mathcal{A}_n(\mathbb{R})) = \frac{n(n+1)}{2} + \frac{n(n-1)}{2} = n^2 = \dim(\mathcal{M}_n(\mathbb{R})),$$

on obtient $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \oplus \mathcal{A}_n(\mathbb{R})$.

3. Soit $M \in \mathcal{M}_n(\mathbb{R})$. On sait donc qu'il existe une unique $S \in \mathcal{S}_n(\mathbb{R})$ et une unique $A \in \mathcal{A}_n(\mathbb{R})$ telles que M = S + A.

3

En transposant, on trouve $M^T = S - A$ donc $S = \frac{1}{2}(M + M^T)$ et $A = \frac{1}{2}(M - M^T)$.

En particulier dans le cas où n=2, si l'on note p la projection sur $\mathcal{S}_2(\mathbb{R})$ dans la direction de $\mathcal{A}_2(\mathbb{R})$, on obtient :

$$p(E_{1,1}) = E_{1,1}, \quad p(E_{1,2}) = \frac{1}{2}(E_{1,2} + E_{2,1}), \quad p(E_{2,1}) = \frac{1}{2}(E_{2,1} + E_{1,2}), \quad p(E_{2,2}) = E_{2,2}$$

Et donc
$$\mathcal{M}_{\mathcal{B}}(p) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Problème 1 CCP PC 2020 exercice 1

à partir d'un corrigé de Laurent Carrot

Dans le problème, on pourra utiliser sans la démontrer l'inégalité $|\sin(t)| \le |t|$ valable pour tout $t \in \mathbb{R}$.

Partie I - Préliminaires

- 1. c.f. (E1) Cours. Certains ont quand même du mal à le recopier....
- 2. Posons $u(t) = 1 \cos(t)$, $u'(t) = \sin(t)$, $v(t) = -\frac{1}{t}$, $v'(t) = \frac{1}{t^2}$. Les fonctions u et v sont de classe \mathcal{C}^1 sur $]0, +\infty[$.

•
$$u(t)v(t) = \frac{1 - \cos(t)}{t} = \frac{1 - (1 - t^2/2 + o(t^2))}{t} = \frac{t^2/2 + o(t^2)}{t} = \frac{t}{2} + o(t) \underset{t \to 0}{\rightarrow} 0.$$

•
$$u(t)v(t) = \underbrace{\frac{1-\cos(t)}{1-\cos(t)}}_{\text{borné}} \underset{t\to+\infty}{\to} 0.$$

D'où, par intégration par parties :

$$I = \int_0^{+\infty} u'(t)v(t)dt$$
 converge si et seulement si $\int_0^{+\infty} \frac{1-\cos(t)}{t^2}dt$ converge.

Comme on sait que I converge d'après la question I.1, $\int_0^{+\infty} \frac{1-\cos(t)}{t^2} dt$ converge aussi et on a :

$$\int_0^{+\infty} \frac{1 - \cos(t)}{t^2} dt = \underbrace{\left[\frac{1 - \cos(t)}{t}\right]_0^{+\infty}}_{=0} + \int_0^{+\infty} \frac{\sin(t)}{t} dt$$

On a bien démontré que l'intégrale $\int_0^{+\infty} \frac{1-\cos(t)}{t^2} dt$ est convergente et qu'elle est égale à I.

- 3. Soit x > 0. Soit x > 0.
 - $t\mapsto f(x,t)$ est continue (par morceaux) sur \mathbb{R}_+^* par opérations sur les fonctions usuelles.

Pour tout
$$t > 0$$
, $|\sin(t)| \le |t|$, donc $|f(x,t)| = \left|\frac{\sin(t)}{t}e^{-xt}\right| \le e^{-xt}$.

Or $t \mapsto e^{-xt}$ est intégrable sur \mathbb{R}_+^* (car x > 0), donc, par comparaison, $t \mapsto f(x,t)$ est intégrable sur \mathbb{R}_+^* .

4. c.f. Cours.

Partie II - Calcul de F sur $]0, +\infty[$

5. Soit x > 0.

Pour tout t > 0, $|f(x,t)| = \left| \frac{\sin(t)}{t} e^{-xt} \right| \le e^{-xt}$.

D'où, par l'inégalité triangulaire généralisée et par positivité de l'intégrale convergente (avec « $0 \le +\infty$ »), on a :

$$|F(x)| = \left| \int_0^{+\infty} f(x,t)dt \right| \le \int_0^{+\infty} |f(x,t)|dt \le \int_0^{+\infty} e^{-xt}dt = \frac{1}{x}.$$

• Or $\lim_{x \to +\infty} \frac{1}{x} = 0$, donc, d'après le théorème des gendarmes,

$$\lim_{x \to +\infty} F(x) = 0.$$

- 6. Soit a > 0.
 - Pour tout $x \in [a, +\infty[$, $t \mapsto f(x, t)$ est intégrable sur \mathbb{R}_+^* (d'après la question 3. avec $x \ge a > 0$).
 - Pour tout t > 0, $x \mapsto f(x,t)$ est de classe \mathcal{C}^1 sur $[a, +\infty[$ et, pour tout $x \ge a$,

$$t \mapsto \frac{\partial f}{\partial x}(x,t) = -\sin(t)e^{-xt}$$

- est continue (par morceaux) sur \mathbb{R}_{+}^{*} .
- Pour tout $x \ge a$, pour tout t > 0,

$$\left| \frac{\partial f}{\partial x}(x,t) \right| = \left| -\sin(t)e^{-xt} \right| \le e^{-xt} \le e^{-at} = \varphi(t),$$

où φ est intégrable sur \mathbb{R}_+^* (car a > 0).

D'où, d'après le théorème de dérivation des intégrales à paramètres, $F: x \mapsto \int_0^{+\infty} f(x,t)dt$ est de classe \mathcal{C}^1 sur $[a, +\infty[$ et, pour tout $x \geq a$,

$$F'(x) = \int_0^{+\infty} \frac{\partial f}{\partial x}(x, t)dt = -\int_0^{+\infty} \sin(t)e^{-xt}dt.$$

7. On détaille le raisonnement pour bien comprendre : montrer que F est dérivable sur $]0, +\infty[$ revient à montrer que F est dérivablee en tout x_0 de $]0, +\infty[$ (propriété locale).

Soit $x_0 \in]0, +\infty[$. On pose $a = x_0/2$. Alors $x_0 \in [a, +\infty[$ et d'après la question précédent F est dérivable sur $[a, +\infty[$ donc elle est en x_0 .

Ceci étant valable en tout x_0 de $]0, +\infty[$, F est dérivable sur $]0, +\infty[$.

C'est ce qu'il conviendrait d'écrire ici, puisque la question est explicitement posée.

Si cela est une étape d'un raisonnement mené sans question intermédiaire, on pourra écrire plus simplement : « F est dérivable sur **tout** $[a, +\infty[\subset]0, +\infty[$ donc elle l'est sur $]0, +\infty[$ (propriété locale). »

L'expression de la dérivée obtenue précédemment est donc valable sur $]0, +\infty[$.

$$F'(x) = -\int_0^{+\infty} \sin(t)e^{-xt}dt = -\mathcal{I}\operatorname{m}\left(\int_0^{+\infty} e^{it}e^{-xt}dt\right) = -\mathcal{I}\operatorname{m}\left(\left[\frac{e^{(i-x)t}}{i-x}\right]_0^{+\infty}\right)$$

Or
$$\left| e^{(i-x)t} \right| = e^{-xt} \underset{t \to +\infty}{\longrightarrow} 0$$
 car $x > 0$ donc il reste : $F'(x) = -\mathcal{I}m\left(0 - \frac{1}{i-x}\right) = -\frac{1}{1+x^2}$.

Ainsi il existe $K \in \mathbb{R}$ tel que, pour tout x > 0, $F(x) = -\arctan(x) + K$.

Enfin, $\lim_{x\to +\infty} F(x) = 0$, donc $-\frac{\pi}{2} + K = 0$, donc $K = \frac{\pi}{2}$, et, par suite, pour tout x > 0,

$$\forall x > 0, \quad F(x) = \frac{\pi}{2} - \arctan(x).$$

Partie III - Conclusion

- 8. Pour tout $t \in]0,1], x \mapsto f(x,t)$ est continue sur [0,1].
 - Pour tout $x \in [0,1]$, $t \mapsto f(x,t)$ est continue (par morceaux) sur [0,1].
 - Pour tout $t \in]0,1]$, pour tout $x \in [0,1]$,

$$|f(x,t)| = \left|\frac{\sin(t)}{t}e^{-xt}\right| \le e^{-xt} \le 1 = \varphi(t),$$

où φ est intégrable sur]0,1] (constante sur un intervalle borné). D'où, d'après le théorème de continuité des intégrales à paramètre :

$$F_1: x \mapsto \int_0^1 f(x,t)dt$$
 est continue sur $[0,1]$.

9. Soit $x \in [0,1]$. L'application $t \longmapsto \frac{x \sin(t) + \cos(t)}{t^2} e^{-xt}$ est continue sur $[1, +\infty[$ et on a :

$$\forall t \ge 1, \qquad \left| \frac{x \sin(t) + \cos(t)}{t^2} e^{-xt} \right| \le \frac{2}{t^2} e^{-xt} \le 2e^{-xt}.$$

Or $t \mapsto e^{-xt}$ est intégrable au voisinage de $+\infty$ car x > 0, donc par comparaison :

$$t \longmapsto \frac{x\sin(t) + \cos(t)}{t^2} e^{-xt} \text{ est intégrable sur } [1, +\infty[.$$

On effectue une intégration par parties. On pose :

$$u(t) = (x\sin(t) + \cos(t))e^{-xt} \qquad u'(t) = -(1+x^2)\sin(t)e^{-xt}$$

$$v'(t) = \frac{1}{t^2} \qquad v(t) = \frac{-1}{t^2}$$

Les fonctions u et v sont de classe C^1 sur $[1, +\infty[$ et $\lim_{t\to +\infty} u(t)v(t) = 0$.

On obtient donc:

$$\int_{1}^{+\infty} \frac{x \sin(t) + \cos(t)}{t^2} e^{-xt} dt = \left[-\frac{x \sin(t) + \cos(t)}{t^2} e^{-xt} \right]_{1}^{+\infty} - \int_{1}^{+\infty} (1 + x^2) \frac{\sin(t)}{t} e^{-xt} dt.$$

C'est-à-dire :
$$\int_{1}^{+\infty} \frac{x \sin(t) + \cos(t)}{t^2} e^{-xt} dt = (x \sin(1) + \cos(1))e^{-x} - (1 + x^2)F_2(x).$$

10. En appliquant le théorème de continuité sous le signe intégrale, on montrerait (à faire!) que :

$$x \longmapsto \int_{1}^{+\infty} \frac{x \sin(t) + \cos(t)}{t^2} e^{-xt} dt$$
 est continue sur $[0, 1]$.

Et puisque pour tout $x \in [0, 1]$,

$$F_2(x) = \frac{1}{1+x^2} \left((x\sin(1) + \cos(1))e^{-x} - \int_1^{+\infty} \frac{x\sin(t) + \cos(t)}{t^2} e^{-xt} dt \right),$$

on a bien:

La fonction F_2 est continue sur [0,1].

11. Par la relation de Chasles, $F = F_1 + F_2$ donc F est continue sur [0,1]. Elle est donc continue en 0, ce qui s'écrit : $F(0) = \lim_{x\to 0} F(x) = F(0)$.

Or dans la question 7, on a vu que pour tout x > 0 $F(x) = \frac{\pi}{2} - Arctan(x)$.

Quand x tend vers 0, on obtient :

$$I = \int_0^{+\infty} \frac{\sin t}{t} dt = F(0) = \frac{\pi}{2}.$$

Exercice 3

Oral Mines-Ponts PSI 2019

Comme l'exercice n'a été rédigé par personne, je donne quelques indications. Ceux qui le souhaitent peuvent me poser des questions par mail.

1. On note $r = \operatorname{rg}(A) = \operatorname{rg}(B)$. Puisque $A^2 = 0$, on a $\operatorname{Im}(A) \subset \operatorname{Ker}(A) \subset \mathcal{M}_{n,1}(\mathbb{R})$.

Cela ressemble à l'exercice vu en TD juste avant les vacances, mais en plus grande dimension : montrer que A et B sont semblables à une même matrice simple.

Idée 1 : Prendre un base de Im(A), la compléter en une base de Ker(A), et recompléter en une base de $\mathcal{M}_{n,1}(\mathbb{R})$ en utilisant la définition des vecteurs de Im(A).

On obtient une matrice semblable à A très simple... et pour B c'est la même chose.

Idée 2 : C'est un peu la même chose. On prend une base X_{n-r+1}, \ldots, X_n d'un supplémentaire de $\operatorname{Ker}(A)$ dans $\mathcal{M}_{n,1}(\mathbb{R})$.

On peut montrer (cf preuve du théorème du rang) que $X_1 = AX_{n-r+1}, \dots, X_r = AX_n$ forment une base de Im(A).

On complète cette base en une base de Ker(A) et on obtient ainsi une base de $\mathcal{M}_{n,1}(\mathbb{R})$.

A est semblable à la matrice remplie de 0 partout, sauf un bloc I_r en haut à droite, et B aussi...

2. Trouver un exemple de deux matrices A et B dans $\mathcal{M}_4(\mathbb{R})$ vérifiant les hypothèses, mais qui ont des indices de nilpotence est différents (2 et 3).

Exercice 4

Oral Mines-Ponts PSI 2016

Celui-ci est plus difficile. Puiqu'il fait intervenir la trace, il faut construire uen base judicieuse en utilisant le noyau de g (hyperplan) et le fait que f soit un automorphisme. Bien prendre en compte que l'on cherche la trace de $g \circ f^{-1}$.

Calculer la trace demandée, et la matrice de f + g dans cette bonne base et faire le lien.