

Devoir non surveillé 1 - Correction

I - Étude de suites

1. Par une récurrence simple (à faire) sur $n \geq 2$, on montrerait la propriété (\mathcal{P}_n) suivante.

$$(\mathcal{P}_n)$$
: c_n existe et $c_n \in]0,1]$.

Et donc, on définit bien une suite $(\lambda_n)_{n\in\mathbb{N}^*}$ par $\lambda_1=2$ et $\lambda_{n+1}=\frac{\lambda_n}{c_{n+1}}$ pour $n\in\mathbb{N}$.

Ainsi, puisque cos est une bijection de $[0, \pi/2]$ sur [0, 1], pour tout $n \in \mathbb{N}^*$, il existe un unique $\theta_n \in [0, \pi/2]$ tel que $\cos(\theta_n) = c_n$.

En particulier, $c_1 = 0$ donc $\theta_1 = \frac{\pi}{2}$. De plus si $n \ge 2$, $c_n \in]0,1]$ donc $\theta_n \ne \pi/2$.

D'autre part, on a les égalités suivantes.

$$\cos(\theta_{n+1}) = c_{n+1} = \sqrt{\frac{1+c_n}{2}} = \sqrt{\frac{1+\cos(\theta_n)}{2}}$$
$$= \sqrt{\cos^2(\theta_n/2)} = |\cos(\theta_n/2)| = \cos(\theta_n/2)$$

Par unicité de l'angle θ_{n+1} , et puisque $\theta_n \in [0, \pi/2[$, on a $\theta_{n+1} = \frac{\theta_n}{2}$ (suite géométrique) et donc

$$\forall n \in \mathbb{N}, \quad \theta_n = \frac{\theta_1}{2^{n-1}} = \frac{\pi}{2^n}.$$

On a donc $\theta_n \in]0, \pi/2]$ et $\sin(\theta_n) > 0$. On peut donc définir pour tout entier $n \ge 1$:

$$\alpha_n = \frac{\lambda_n}{\sin(\theta_n)}.$$

On a alors:

$$\alpha_{n+1} = \frac{\lambda_{n+1}}{\sin(\theta_{n+1})} = \frac{\lambda_n}{c_{n+1}\sin(\theta_{n+1})} = \frac{\lambda_n}{\cos(\theta_{n+1})\sin(\theta_{n+1})}$$
$$= \frac{2\lambda_n}{\sin(2\theta_{n+1})} = \frac{2\lambda_n}{\sin(\theta_n)} = 2\alpha_n$$

Ainsi,
$$\alpha_n = 2^{n-1}\alpha_1 = 2^n$$
.

On a enfin $\lambda_n = \alpha_n \sin(\theta_n) = 2^n \sin\left(\frac{\pi}{2^n}\right) \underset{n \to +\infty}{\sim} 2^n \cdot \frac{\pi}{2^n}$. On obtient donc : $\lim_{n \to +\infty} \lambda_n = \pi$.

2. La fonction sin est de classe C^3 sur \mathbb{R} et ses dérivées successives sont bornées par 1 en valeur absolue. On applique la formule de Taylor-Lagrange en 0 à l'ordre 2.

$$\forall x \in \mathbb{R}, \quad |\sin(x) - x| \le \frac{1 \cdot |x|^3}{3!}.$$

On l'écrit avec $x = \theta_n = \frac{\pi}{2^n}$.

$$\left|\sin\left(\frac{\pi}{2^n}\right) - \frac{\pi}{2^n}\right| \le \frac{1.\pi^3}{6.2^{3n}}.$$

En multipliant par
$$2^n$$
, on obtient $\forall n \in \mathbb{N}^*, |\pi - \lambda_n| \leq \frac{\pi^3}{6 \times 4^n}$.

Pour que $|\pi - \lambda_{N_1}| \le 10^{-6}$, il **suffit** donc de choisir N_1 tel que $\frac{\pi^3}{6 \times 4^n} \le 10^{-6}$.

L'application numérique donne
$$N_1 > 11$$
, prenons par exemple $N_1 = 12$.
3. On a $\sin(x) = x - \frac{x^3}{3!} + \dots + \frac{(-1)^p x^{2p+1}}{(2p+1)!} + \mathop{o}_{x\to 0}(x^{2p+2})$.

En prenant $x = \theta_n = \frac{\pi}{2^n}$ (qui tend bien vers 0), et en multilpliant par 2^n , on obtient :

$$\lambda_n = \pi - \frac{\pi^3}{3!} \frac{1}{4^n} + \dots + (-1)^p \frac{\pi^{2p+1}}{(2p+1)!} \frac{1}{4^{pn}} + \mathop{o}_{n \to +\infty} \left(\frac{1}{4^{np}} \right).$$

4. On définit une nouvelle suite $(\lambda_n^{(1)})_{n\in\mathbb{N}^*}$ par $\lambda_n^{(1)} = \frac{-\lambda_n + 4\lambda_{n+1}}{3}$. Par combinaison linéaire de suites conver-

geant vers
$$\pi$$
, on montre facilement que $(\lambda_n^{(1)})_{n\in\mathbb{N}^*}$ converge aussi vers π .
On a de plus $\lambda_n - \pi = -\frac{\pi^3}{6.4^n} + o \left(\frac{1}{4^n}\right)$ et $\lambda_{n+1} - \pi = -\frac{\pi^3}{4.6.4^n} + o \left(\frac{1}{4^n}\right)$. Ainsi dans la combinaison

linéaire définissant
$$\lambda_n^{(1)}$$
, les premiers termes s'éliminent. Il reste donc : $|\lambda_n^{(1)} - \pi| = o \atop n \to +\infty} \left(\frac{1}{4^n}\right) = o \atop n \to +\infty} (\lambda_n - \pi)$.

Pour obtenir un équivalent de $\lambda_n^{(1)} - \pi$ lorsque n tend vers $+\infty$, on prend un terme supplémentaire dans le développement asymptotique démontré dans la question 3. Le calcul donne

$$\lambda_n^{(1)} - \pi = \frac{1}{3} \left(\frac{\pi^5}{5!4^{2n}} - 4 \frac{\pi^5}{5!4^{2n+2}} \right) + \mathop{o}_{n \to +\infty} \left(\frac{1}{4^{2n}} \right).$$

Et donc $\lambda_n^{(1)} - \pi \sim -\frac{\pi^5}{5!4^{2n+1}}$.

5. À la manière de la question 4. on cherche α pour que les premiers termes du développement asymptotique

de $\alpha \lambda_n^{(1)} + (1 - \alpha) \lambda_{n+1}^{(1)}$ s'éliminent. Le calcul donne $\alpha = -\frac{1}{15}$ et donc

$$\lambda_n^{(2)} - \pi = \mathop{o}_{n \to +\infty} \left(\frac{1}{4^{2n}} \right).$$

6. Avec $\alpha = -\frac{1}{15}$, on obtient $\lambda_n^{(2)} = \frac{1}{45}(\lambda_n - 20\lambda_{n+1} + 64\lambda_{n+2})$.

La fonction sin est de classe C^7 sur $\mathbb R$ et ses dérivées successives sont bornées par 1 en valeur absolue. On applique la formule de Taylor-Lagrange en 0 à l'ordre 6.

$$\forall x \in \mathbb{R}, \quad \left| \sin(x) - x + \frac{x^3}{3!} - \frac{x^5}{5!} \right| \le \frac{1 \cdot |x|^7}{7!}.$$

On l'écrit avec $x=\theta_n=\frac{\pi}{2^n}$ et on multiplie par $2^n,$ on obtient

$$\lambda_n - \pi = -\frac{\pi^3}{6.4^n} + \frac{\pi^5}{120.4^{2n}} + R_n$$

avec $|R_n| \le \frac{\pi^7}{7!4^{3n}}$. On l'écrit en changeant n en n+1 et n+2, et lorsqu'on injecte ces égalités dans l'expression de $\lambda_n^{(2)}$ les deux premiers termes s'éliminent.

Il reste $|\lambda_n^{(2)} - \pi| \le \frac{1}{45} \frac{\pi^7}{7!} \left(\frac{1}{4^{3n}} + \frac{20}{4^{3n+3}} + \frac{64}{4^{3n+6}} \right)$. Le calcul donne

$$\forall n \in \mathbb{N}^*, \qquad |\lambda_n^{(2)} - \pi| \le \frac{17\pi^7}{576 \times 7!} \cdot \frac{1}{4^{3n}}.$$

Pour que $|\lambda_{N_2}^{(2)} - \pi| \le 10^{-6}$, il suffit de choisir N_2 tel que $\frac{17\pi^7}{576 \times 7!} \cdot \frac{1}{4^{3n}} \le 10^{-6}$. On trouve que c'est réalisé pour $N_2 = 2$.

II - Polynômes de Bernoulli

1. Soit f une fonction définie et continue sur [0, 1], à valeurs réelles. Par le théorème fondamental de l'analyse, $G: x \longmapsto \int_0^x f(t)dt$ est l'unique primitive de f qui s'annule en 0. On a donc les équivalences suivantes.

$$F' = f \text{ et } \int_0^1 F(t)dt = 0 \iff \exists c \in \mathbb{R}, F = G + c \text{ et } \int_0^1 F(t)dt = 0$$

$$\iff \exists c \in \mathbb{R}, F = G + c \text{ et } \int_0^1 (G(t) + c)dt = 0$$

$$\iff \exists c \in \mathbb{R}, F = G + c \text{ et } c = -\int_0^1 G(t)dt$$

Ainsi, F existe et est uniquement déterminée par $\forall x \in [0,1], \ F(x) = G(x) - \int_{-1}^{1} G(t) dt$.

Et puisque F = f' avec f continue, F est de classe $\overline{C^1}$.

2. On montre par récurrence sur $n \in \mathbb{N}$ la propriété \mathcal{P}_n suivante.

$$\mathcal{P}_n: \begin{cases} B_n \text{ existe,} \\ \deg(B_n) = n \\ \text{le coefficient dominant de } B_n \text{ est } \frac{1}{n!} \end{cases}$$

- Pour n = 0, $B_0 = 1$ et \mathcal{P}_0 est vraie.
- Soit $n \in \mathbb{N}$ pour lequel \mathcal{P}_n est vraie.

On identifie ici les polynômes et leurs fonctions polynomiales associées sur [0,1]. Ainsi, B_n est continue sur [0,1] et donc, d'après la question II.1, il existe une unique fonction F de classe \mathcal{C}^1 telle que F' = f et $\int_0^1 F(t)dt = 0$. Les primitives de fonctions polynomiales sont encore des fonctions polynomiales. Ainsi la fonction F est la fonction polynomiale associée à B_{n+1} sur [0,1], et donc B_{n+1} est complètement défini.

De plus, on sait que $B_n(X) = \frac{X^n}{n!}$ +termes de degrés $\leq n-1$ et donc en intégrant :

$$B_{n+1}(X) = \frac{X^{n+1}}{(n+1)!} + \text{termes de degrés} \le n$$

Finalement, \mathcal{P}_{n+1} est vraie, et par le principe de récurrence, \mathcal{P}_n est vraie pour tout entier n.

On connaît $B_0 = 1$. Calculons B_1 . On a $B_1'(X) = B_0(X) = 1$ donc ilexiste $c \in \mathbb{R}$ tel que $B_1(X) = X + c$. En écrivant $\int_0^1 B_1(t)dt = 0$, on trouve que $c = -\frac{1}{2}$ et donc $B_1(X) = X - \frac{1}{2}$.

En écrivant
$$\int_0^1 B_1(t)dt = 0$$
, on trouve que $c = -\frac{1}{2}$ et donc $B_1(X) = X - \frac{1}{2}$.

En procédant de même, de proche en proche, on trouve B_2, B_3, B_4 . Le calcul donne :

$$B_2(X) = \frac{X^2}{2} - \frac{X}{2} + \frac{1}{12}, \quad B_3(X) = \frac{X^3}{6} - \frac{X^2}{4} + \frac{X}{12} \text{ et } B_4(X) = \frac{X^4}{24} - \frac{X^3}{12} + \frac{X^2}{24} - \frac{1}{720}.$$

3. Soit $n \in \mathbb{N}$. Montrons que $B_{n+2}(1) = B_{n+2}(0)$.

Par définition des polynômes de Bernstein, on a $B'_{n+2} = B_{n+1}$ et :

$$\int_0^1 B_{n+1}(t)dt = 0 = \left[B_{n+2}(t) \right]_0^1 = B_{n+2}(1) - B_{n+2}(0).$$

Puisque c'est vrai pour tout $n \in \mathbb{N}$, on a bien démontré :

Pour tout entier
$$n \ge 2$$
, $B_n(1) = B_n(0)$.

4. On a $C_0(X) = (-1)^0 B_0(1-X) = 1$.

De plus,
$$C'_{n+1}(X) = (-1)^{n+1} \left(-B'_{n+1}(1-X) \right) = (-1)^n B_n(1-X) = C_n(X).$$

Et enfin, pour tout $n \in \mathbb{N}$, à l'aide du changement de variable u = 1 - t (affine), on a :

$$\int_0^1 C_{n+1}(t)dt = (-1)^{n+1} \int_0^1 B_{n+1}(1-t)dt = (-1)^n \int_0^1 B_{n+1}(u)du = 0$$

par définition des polynômes de Bernstein.

Ainsi, les polynômes C_n vérifient bien les conditions de la question II.2. Comme ces conditions définissent les polynômes B_n , on a donc :

$$\forall n \in \mathbb{N}, \quad C_n(X) = B_n(X) = (-1)^n B_n(1 - X).$$

Ainsi,

- Si n est pair : pour tout $x \in \mathbb{R}$, on a $B_n(x) = B_n(1-x)$ ou encore, $B_n\left(\frac{1}{2}-x\right) = B_n\left(\frac{1}{2}+x\right)$. Et donc, la droite d'équation $x = \frac{1}{2}$ est axe de symétrie du graphe de B_n .
- Si n est impair : pour tout $x \in \mathbb{R}$, on a $B_n(x) = -B_n(1-x)$ ou encore, $B_n\left(\frac{1}{2}-x\right) = -B_n\left(\frac{1}{2}+x\right)$. Et donc, le point de coordonnées $\left(\frac{1}{2},0\right)$ est centre de symétrie du graphe de B_n .

Enfin si $n \ge 3$ est impair, alors $B_n\left(\frac{1}{2}\right) = -B_n\left(\frac{1}{2}\right)$ donc $B_n\left(\frac{1}{2}\right) = 0$.

Et aussi, $B_n(0) = -B_n(1)$, et comme $n \ge 3$, on a aussi d'après la question II.3, $B_n(0) = B_n(1)$ et donc

$$B_n(0) = B_n(1) = 0.$$

- 5. On raisonne par récurrence sur $m \in \mathbb{N}$.
- Pour m = 0: $B_1(x) = x \frac{1}{2}$ ne s'annule pas sur l'intervalle $\left[0, \frac{1}{2}\right[$.
- Soit $m \in \mathbb{N}^*$. Supposons que B_{2m-1} ne s'annule pas sur l'intervalle $\left]0, \frac{1}{2}\right[$. Comme B_{2m-1} est continu, par le théorème des valeurs intermédiaires, il est de signe constant sur cet intervalle.

Ainsi, $B'_{2m} = B_{2m-1}$ est de signe constant (non nul) sur $\left]0, \frac{1}{2}\right[$. Deux cas se présentent : B_{2m} strictement croissante, ou B_{2m} strictement décroissante sur $\left]0, \frac{1}{2}\right[$.

D'autre part, d'après la question précédente, $B_{2m+1}(0) = B_{2m+1}(1/2) = 0$ et donc par le théorème de Rolle, sa dérivée $B'_{2m+1} = B_{2m}$ s'annule au moins une fois sur sur l'intervalle $\left]0, \frac{1}{2}\right[$. Et c'est exactement une fois car B_{2m} est strictement monotone.

En représentant le tableau de variation de B_{2m+1} dans chacun des deux cas, on obtient que :

$$B_{2m+1}$$
 ne s'annule pas sur $\left]0,\frac{1}{2}\right[$.

On étudie la fonction $f: x \longmapsto B_{2m}(x) - B_{2m}(\underline{0}) \operatorname{sur}[0,1]$.

On a $f' = B'_{2m} = B_{2m-1}$ ne s'annule pas sur $\left[0, \frac{1}{2}\right]$ donc elle est de signe constant. Ainsi, f est strictement monotone sur $\left[0, \frac{1}{2}\right]$ et comme f(0) = 0 elle y est de signe constant (et ne s'annulle qu'en 0).

Par symétrie par rapport à la droite d'équation $x = \frac{1}{2}$ pour B_{2m} , on obtient aussi que f est de signe constant sur $\left[\frac{1}{2},1\right]$ (et ne s'annulle qu'en 1).

III - Séries de Riemann et nombres de Bernoulli

1. C'est une question classique à savoir refaire! On remarque que si $t \in]0,1[$ alors $2\pi t \in]0,2\pi[$ et donc $e^{2i\pi t} \neq 1$. Ainsi, pour $t \in]0,1[$, on a

 $\frac{N}{1 - e^{2iN\pi t}} \qquad e^{iN\pi t} \sin(N\pi t) \qquad \sin(N\pi t)$

$$\sum_{k=1}^{N} e^{2ik\pi t} = e^{2i\pi t} \frac{1 - e^{2iN\pi t}}{1 - e^{2i\pi t}} = e^{2i\pi t} \frac{e^{iN\pi t}}{e^{i\pi t}} \frac{\sin(N\pi t)}{\sin(\pi t)} = e^{i(N+1)\pi t} \frac{\sin(N\pi t)}{\sin(\pi t)}$$

Et donc, en prenant la partie réelle :

$$1 + 2\sum_{k=1}^{N} e^{2ik\pi t} = 1 + 2\cos((N+1)\pi t)\frac{\sin(N\pi t)}{\sin(\pi t)} = \frac{\sin(\pi t) + 2\cos((N+1)\pi t)\sin(N\pi t)}{\sin(\pi t)}$$

Or, par les formules de linéarisation en trigonométrie, $2\cos((N+1)\pi t)\sin(N\pi t) = \sin((2N+1)\pi t) - \sin(\pi t)$. Et donc, on obtient bien le résultat attendu :

$$\forall t \in]0,1[, \qquad 1+2\sum_{k=1}^{N}\cos(2k\pi t) = \frac{\sin((2N+1)\pi t)}{\sin(\pi t)}$$

2. Puisque B_n est dérivable en 0, on a :

$$\varphi_n(t) = \frac{B_n(t) - B_n(0)}{\sin(\pi t)} = \frac{B_n(t) - B_n(0)}{t} \frac{t}{\sin(\pi t)} = \frac{1}{\pi} \frac{B_n(t) - B_n(0)}{t} \frac{\pi t}{\sin(\pi t)} \xrightarrow[t \to 0]{} \frac{B'_n(0)}{\pi}.$$

D'autre part,
$$\varphi_n(1-t) = \frac{B_n(1-t) - B_n(1)}{\sin(\pi - \pi t)} = (-1)^n \frac{B_n(t) - B_n(0)}{\sin(\pi t)} \xrightarrow[t \to 0]{} (-1)^n \frac{B'_n(0)}{\pi}.$$

Et donc φ_n est prolongeable en une fonction continue sur [0,1].

D'autre part, φ_n est de classe \mathcal{C}^1 sur]0,1[et :

$$\forall t \in]0,1[, \quad \varphi'_n(t) = \frac{B'_n(t)\sin(\pi t) - \pi\cos(\pi t)(B_n(t) - B_n(0))}{\sin^2(\pi t)}$$

Or B_n est de classe C^2 (et donc B'_n de classe C^1) au voisinage de 0, donc la formule de Taylor-Young donne :

$$B_n(t) = B_n(0) + tB'_n(0) + \frac{t^2}{2}B''_n(0) + \underset{t \to 0}{o}(t^2)$$

$$B'_n(t) = B'_n(0) + tB''_n(0) + \underset{t \to 0}{o}(t)$$

En reportant dans l'expression de $\varphi'_n(t)$ et en utilisant les développements limités de $\sin(\pi t)$ et $\cos(\pi t)$ à l'ordre 1 en 0, on obtient que

$$\varphi_n'(t) = \frac{B_n''(0)}{2\pi} + \underset{t \to 0}{o}(1)$$

En changeant t en (1-t), on aurait un résultat similaire au voisinage de 1. Et donc :

- φ_n est prolongeable en une fonction continue sur [0,1].
- La fonction ainsi prolongée est de classe C^1 sur [0,1[,
- et sa dérivée admet des limites finies en 0 et 1.

Par le théorème de la limite de la dérivée, la fonction prolongée est de classe C^1 sur [0,1]. Et donc :

$$\varphi_n$$
 est prolongeable en une fonction de classe \mathcal{C}^1 sur $[0,1]$.

3. Soit f une fonction de classe C^1 sur [0,1]. On effectue une intégration par parties.

$$\lim_{x \to +\infty} \int_0^1 f(t) \sin(xt) dt = \left[-\frac{\cos(xt)}{x} f(t) \right]_0^1 + \frac{1}{x} \int_0^1 \cos(xt) f'(t) dt$$
$$= \frac{1}{x} \underbrace{\left(-\cos(x) f(1) + f(0) \right)}_{\text{born\'e}} + \frac{1}{x} \int_0^1 \cos(xt) f'(t) dt$$

Le premier terme tend vers 0 quand x tend vers $+\infty$. Le deuxième également car :

$$\left| \frac{1}{x} \int_0^1 \cos(xt) f'(t) dt \right| \le \frac{1}{x} \int_0^1 |\cos(xt) f'(t)| dt \le \frac{1}{x} \int_0^1 |f'(t)| dt = \frac{M}{x}.$$

On a donc bien

$$\lim_{x \to +\infty} \int_0^1 f(t) \sin(xt) dt = 0.$$

4. Une double intégration par parties donne (on vérifiera bien les hypothèses au moins pour la première et on utilisera la définition des polynômes de Bernstein):

$$I_{n,k} = \int_0^1 B_n(t) \cos(2k\pi t) dt = \frac{1}{4k^2 \pi^2} \Big(B_{n-1}(1) - B_{n-1}(0) - I_{n-2,k} \Big).$$

• Si n = 2p est pair : alors si $p \ge 2$, $B_{n-1}(1) - B_{n-1}(0) = 0$ et donc $I_{2p,k} = -\frac{1}{4k^2\pi^2}I_{2(p-1),k}$.

Par récurrence, on trouve
$$I_{2p,k} = \frac{(-1)^{p-1}}{(4k^2\pi^2)^{p-1}}I_{2,k}$$
. Or $I_{2,k} = \frac{1}{4k^2\pi^2}\Big(B_1(1) - B_1(0) - I_{0,k}\Big) = \frac{1}{4k^2\pi^2}\Big(1 - 0\Big)$.

Et donc
$$\forall p \in \mathbb{N}^*, \quad I_{2p,k} = \frac{(-1)^{p-1}}{(4k^2\pi^2)^p} = \frac{(-1)^{p-1}}{(2k\pi)^{2p}}.$$

 \bullet Si n=2p+1 est impair : Comme $I_{1,k}=0,$ par récurrence, on trouve directement :

$$\forall p \in \mathbb{N}, \quad I_{2p+1,k} = 0.$$

5. Si $m=0,\, \varphi_m=\varphi_0=0.$ Supposons que $m\in\mathbb{N}^*.$ On a les égalité suivantes (en utilisant III.1) :

$$\int_{0}^{1} \varphi_{2m}(t) \sin((2N+1)\pi t) dt = \int_{0}^{1} \left(B_{2m}(t) - B_{2m}(0) \right) \frac{\sin((2N+1)\pi t)}{\sin(\pi t)} dt$$

$$= \int_{0}^{1} \left(B_{2m}(t) - B_{2m}(0) \right) dt + 2 \sum_{k=1}^{N} \int_{0}^{1} \left(B_{2m}(t) - B_{2m}(0) \right) \cos(2k\pi t) dt$$

$$= \int_{0}^{1} \left(B_{2m}(t) - B_{2m}(0) \right) dt + 2 \sum_{k=1}^{N} \left(\int_{0}^{1} B_{2m}(t) \cos(2k\pi t) dt - B_{2m}(0) \int_{0}^{1} \cos(2k\pi t) dt \right)$$

$$= \int_{0}^{1} B_{2m}(t) dt - B_{2m}(0) + 2 \sum_{k=1}^{N} I_{2m,k} = -B_{2m}(0) + 2 \sum_{k=1}^{N} \frac{(-1)^{m-1}}{(2k\pi)^{2m}}$$

Or φ_{2m} est prolongeable en une fonction de classe \mathcal{C}^1 sur [0,1], donc, d'après la question III.3, on a

$$\lim_{N \to +\infty} \int_0^1 \varphi_{2m}(t) \sin((2N+1)\pi t) dt = 0.$$

Et donc quand N tend vers $+\infty$ dans l'égalité précédente, on obtient : $B_{2m}(0) = \sum_{k=1}^{+\infty} \frac{(-1)^{m-1}}{(2k\pi)^{2m}}$ ou encore :

$$\forall m \in \mathbb{N}^*, \quad \sum_{k=1}^{+\infty} \frac{1}{k^{2m}} = 2^{2m-1} (-1)^{m-1} \pi^{2m} B_{2m}(0).$$

En particulier, pour
$$m = 1$$
, on trouve $\sum_{k=1}^{+\infty} \frac{1}{k^2} = 2\pi^2 B_2(0) = \frac{\pi^2}{6}$.

Et pour
$$m = 2$$
, on trouve $\sum_{k=1}^{+\infty} \frac{1}{k^4} = 2^3 \pi^4 (-B_4(0)) = \frac{8\pi^2}{720} = \frac{\pi^4}{90}$.

Pour aller plus loin : La fonction ζ de Riemann est définie sur $]1, +\infty[$ par :

$$\forall x > 1,$$
 $\zeta(x) = \sum_{k=1}^{+\infty} \frac{1}{k^x}.$

On peut démontrer par récurrence que pour tout $m \in \mathbb{N}$, $B_m(0) \in \mathbb{Q}$. Et donc, on a démontré la propriéte suivante, concernant la fonction ζ aux entiers pairs.

$$\forall m \in \mathbb{N}^*, \quad \exists q_m \in \mathbb{Q}, \quad \zeta(2m) = \sum_{k=1}^{+\infty} \frac{1}{k^{2m}} = q_m \pi^{2m}.$$

Une conséquence directe, puisque π est irrationnel, est que les valeurs de ζ aux entiers pairs sont irrationnelles.

En 1882, Ferdinand Lindemann, montre que π est un nombre transcendant, c'est-à-dire qu'il n'est racine d'aucun polynôme à coefficients entiers. Il répond ainsi au problème de la quadrature du cercle, vieux de plus de deux mille ans!

L'expression que nous avons obtenue pour les $\zeta(2m)$, combinée au résultat de Lindemann, permet de conclure que les valeurs de ζ aux entiers pairs sont elles aussi transcendantes.

Aux entiers impairs, les valeurs de ζ sont beaucoup moins bien connues. En 1978, Apéry a montré que $\zeta(3)$ était irrationnel. En 2000, Tanguy Rivoal, a montré, que la fonction ζ de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs.

On conjecture que les valeurs de ζ aux entiers impairs sont transcendantes...