

Devoir non surveillé 13

À rendre le mardi 12 décembre (facultatif)

Notations

On désigne par E l'espace vectoriel des suites complexes bornées. C'est-à-dire :

$$E = \{(u_n)_{n \in \mathbb{N}} \mid \exists M > 0, \ \forall n \in \mathbb{N}, \ |u_n| \le M\}.$$

Pour tout entier naturel n et pour toute suite $u = (u_n)_{n \in \mathbb{N}}$, on pose : $S_n(u) = \sum_{k=0}^n u_k$.

On note F l'ensemble des suites complexes $u=(u_n)_{n\in\mathbb{N}}$ pour lesquelles la série $\sum |u_n|$ converge. On note alors, pour tout $u\in F$,

$$S(u) = \sum_{k=0}^{+\infty} u_k = \lim_{n \to +\infty} S_n(u).$$

On considère un nombre complexe z de module inférieur ou égal à 1. On désigne alors par v, dans tout le problème, l'élément de E défini par

$$v = (z^n)_{n \in \mathbb{N}}.$$

Partie I

- 1. (a) Montrer que F est un sous-espace vectoriel de E.
 - (b) Exprimer $S_n(v) = \sum_{k=0}^n z^k$ suivant les valeurs de z.
- 2. Soit $u \in E$. Montrer que pour tout réel x la série $\sum u_n \frac{x^n}{n!} e^{-x}$ converge. On notera

$$\forall x \in \mathbb{R}, \qquad \Phi_u(x) = \sum_{n=0}^{+\infty} u_n \frac{x^n}{n!} e^{-x}.$$

- 3. Calculer $\Phi_v(x)$.
- 4. Soit $u \in E$. Montrer que la série entière $\sum S_n(u) \frac{x^n}{n!}$ a un rayon de convergence infini. On notera Ψ_u la fonction définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \qquad \Psi_u(x) = \sum_{n=0}^{+\infty} S_n(u) \frac{x^n}{n!} e^{-x}.$$

- 5. Calculer $\Psi_v(x)$ suivant les valeurs de z.
- 6. Montrer que Φ_u et Ψ_u sont des fonctions indéfiniment dérivables sur \mathbb{R} .

Partie II

Le but de cette partie est de prouver que, si $u \in F$:

$$\lim_{x \to +\infty} \Psi_u(x) = \int_0^{+\infty} \Phi_u(x) dx = S(u).$$

1. On suppose dans cette question que |z| < 1, ainsi v est un élément de F.

Vérifier que :

$$\lim_{x \to +\infty} \Psi_v(x) = \int_0^{+\infty} \Phi_v(x) dx = S(v).$$

- 2. Soit $u \in F$.
 - (a) Calculer $\int_0^{+\infty} e^{-x} x^n dx$ pour $n \in \mathbb{N}$. On justifiera son existence.
 - (b) Montrer que Φ_u est intégrable sur $[0, +\infty[$ et prouver que $\int_0^{+\infty} \Phi_u(x) dx = S(u)$.
- 3. Soit $u \in F$.
 - (a) Etudier la convergence normale de la série de fonctions $\sum u_n \frac{x^n}{n!} e^{-x}$ sur $[0, +\infty[$.
 - (b) En déduire que : $\lim_{x \to +\infty} \Phi_u(x) = 0$.
- 4. On considère $u \in E$.
 - (a) En justifiant convenablement les dérivations, montrer que :

$$\forall x \in \mathbb{R}, \qquad e^{-x} \sum_{n=1}^{+\infty} S_n(u) \frac{x^{n-1}}{(n-1)!} = \Psi_u(x) + e^{-x} \frac{d}{dx} \left[\Phi_u(x) e^x \right].$$

(b) En écrivant $\Psi_u(x) = e^{-x} \sum_{n=0}^{+\infty} S_n(u) \frac{x^n}{n!}$, établir que :

$$\forall x \in \mathbb{R}, \qquad \Psi'_u(x) = \Phi_u(x) + \Phi'_u(x).$$

- (c) En déduire que $\forall t \in \mathbb{R}$, $\Psi_u(t) = \int_0^t \Phi_u(x) dx + \Phi_u(t)$.
- 5. Conclure que, si $u \in F$:

$$\lim_{x \to +\infty} \Psi_u(x) = \int_0^{+\infty} \Phi_u(x) dx = S(u).$$

Partie III

On considère la suite
$$u$$
 définie par $u_n = \frac{(-1)^n}{n+1}$.
Le but de cette partie est de comparer $\lim_{x\to +\infty} \Psi_u(x)$ et $\int_0^{+\infty} \Phi_u(x) dx$.

1. (a) Justifier l'égalité suivante.

$$\int_0^1 \frac{dx}{1+x} = \sum_{k=0}^n \frac{(-1)^k}{k+1} + (-1)^{n+1} \int_0^1 \frac{x^{n+1}}{1+x} dx.$$

- (b) En déduire la valeur de $S(u) = \sum_{k=0}^{+\infty} u_k$.
- (c) On note $r_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k+1}$. Montrer que $|r_n| \le \frac{1}{n+1}$.
- (d) En remarquant que $S_n(u) = \ln(2) r_n$, montrer que $\lim_{x \to +\infty} \Psi_u(x) = \ln(2)$.
- 2. (a) Déterminer $\Phi_u(x)$ et montrer que $x \longmapsto \Phi_u(x)$ est intégrable sur $[0, +\infty[$.
 - (b) On fixe a > 0. Pour $x \ge a$, on pose $F(x) = \int_0^{+\infty} \frac{e^{-at} e^{-xt}}{t} dt$. Montrer que F est de classe \mathcal{C}^1 sur $[a, +\infty[$ et en déduire la valeur de F(x).
- 3. En déduire que $\lim_{x\to +\infty} \Psi_u(x) = \int_0^{+\infty} \Phi_u(x) dx$.