

Devoir non surveillé 11

À rendre le mardi 28 novembre

Problème 1 (Matrices T)

On considère $E = \mathbb{R}^3$ muni de sa base canonique $\mathcal{B} = (e_1, e_2, e_3)$.

On note f l'endomorphisme de E dont la matrice dans la base \mathcal{B} est $T = \mathcal{M}_{\mathcal{B}}(f) = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

I - Réduction

- 1. L'endomorphisme f est-il bijectif?
- 2. Déterminer les valeurs propres de f et préciser leurs multiplicités respectives.
- 3. Déterminer les sous-espaces propres de f.
- 4. L'endomorphisme f est-il diagonalisable?
- 5. Déterminer une base $\mathcal{B}' = (u_1, u_2, u_3)$ de E dans laquelle la matrice de f est :

$$R = \mathcal{M}_{\mathcal{B}'}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

On précisera la matrice de passage P et la relation liant R, P et T.

II - Commutant

Pour $A \in \mathcal{M}_3(\mathbb{R})$, on note $Com(A) = \{M \in \mathcal{M}_3(\mathbb{R}), AM = MA\}.$

- 1. Soit $A \in \mathcal{M}_3(\mathbb{R})$. Démontrer que $\mathcal{C}om(A)$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 2. Déterminer Com(R) et en donner une base. Que vaut alors $\dim(Com(R))$?
- 3. En déduire la dimension de Com(T).
- 4. Donner un polynôme annulateur de T de degré 3.
- 5. Soit $P \in \mathbb{R}[X]$ de degré inférieur ou égal à 2.
 - (a) Montrer que si P est un polynôme annulateur de T alors il existe $\alpha \in \mathbb{R}$, tel que :

$$P(X) = \alpha X(X - 1).$$

- (b) En déduire que P = 0.
- 6. Déduire des questions précédentes que $Com(T) = Vect\{I_3, T, T^2\}.$

III - Racines carrées

- 1. Soit $M \in \mathcal{M}_3(\mathbb{R})$.
 - (a) Montrer que si $M^2 = R$ alors MR = RM.

En déduire que dans ce cas, il existe $a,b,c\in\mathbb{R}$ tels que $M=\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & 0 & b \end{pmatrix}$.

(b) Démontrer qu'il existe exactement deux matrices M telles que $M^2=R$, et donner ces deux matrices.

On note M_1 et M_2 ces deux matrices.

2. Déduire des questions précédentes qu'il existe exactement deux matrices N telles que $N^2 = T$, et exprimer ces deux matrices en fonction de M_1, M_2 et P.

On ne demande pas d'effectuer les calculs.

3. On exprime à présent les « racines carrées » de T en fonction de I_3, T, T^2 .

Soit $N \in \mathcal{M}_3(\mathbb{R})$ telle que $N^2 = T$.

- (a) Démontrer que NT = TN. En déduire qu'il existe $x, y, z \in \mathbb{R}$ tels que $N = xI_3 + yT + zT^2$.
- (b) Démontrer que pour tout $n \in \mathbb{N}^*$, il existe $\alpha_n \in \mathbb{R}$ tel que $T^n = \begin{pmatrix} 1 & \alpha_n & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ et déterminer α_n .
- (c) En déduire que x = 0 et que y, z vérifient les égalités suivantes.

$$\begin{cases} (y+z)^2 = 1\\ 3y^2 + 10yz + 7z^2 = 1 \end{cases}$$

(d) En déduire les deux solutions de l'équation $N^2 = T$ en fonction de T, T^2 , puis avec leurs coefficients.

IV - En dimension supérieure

Dans ce paragraphe, on note $E = \mathbb{R}^{2n+1}$ où n est un entier naturel non nul et $\mathcal{B} = (e_1, \dots, e_{2n+1})$ la base canonique de E.

On note h l'endomorphisme de E défini par :

Pour tout
$$i \in \{1, ..., 2n + 1\}$$
, $h(e_i) = \begin{cases} e_1 & \text{si } i \neq n + 1 \\ e_1 + e_2 + \dots + e_{2n+1} & \text{si } i = n + 1 \end{cases}$

- 1. Déterminer la matrice $H = \mathcal{M}_{\mathcal{B}}(h)$ de l'endomorphisme h dans la base \mathcal{B} .
- 2. Déterminer le rang, le noyau et l'image de h.
- 3. Démontrer que $E = \operatorname{Ker}(h) \oplus \operatorname{Im}(h)$.
- 4. Démontrer qu'il existe une base \mathcal{B}' de E telle que la matrice de h dans \mathcal{B}' s'écrive par blocs :

$$\mathcal{M}_{\mathcal{B}'}(h) = \begin{pmatrix} 0 & 0 \\ 0 & \tilde{H} \end{pmatrix}$$

où \tilde{H} est une matrice de $\mathcal{M}_2(\mathbb{R})$.

- 5. Montrer que \tilde{H} est inversible.
- 6. L'endomorphisme h est-il diagonalisable?

Exercice 1 (Très guidé)

On admettra dans cet exercice que $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = -\ln(2).$

Pour $n \in \mathbb{N}$ et x > 0, on pose $f_n(x) = \frac{(-1)^n}{n + x^2}$.

- 1. Étude de convergences.
 - (a) Démontrer que $\sum_{n\in\mathbb{N}} f_n$ converge simplement sur $]0,+\infty[$.

On définit alors $f: x \in]0, +\infty[\longmapsto f(x) = \sum_{n=1}^{+\infty} f_n(x) dx$ (la somme commence à n=1).

- (b) En utilisant le théorème des séries alternées, démontrer que $\sum_{n\geq 1} f_n$ converge uniformément sur $]0,+\infty[$.
- (c) La série $\sum_{n\geq 1} f_n$ converge-t-elle normalement sur $]0,+\infty[$?
- 2. Dans la suite, on étudie la fonction $g: x \in]0, +\infty[\longmapsto g(x) = \sum_{n=0}^{+\infty} f_n(x)$ (la somme commence à n=0).
 - (a) Déterminer le signe de la fonction f.
 - (b) Déterminer une relation entre f et g.
 - (c) Démontrer que f est continue sur $]0, +\infty[$. En déduire que g l'est aussi.
 - (d) Démontrer que f admet une limite en 0^+ et déterminer cette limite.
 - (e) En déduire des constantes réelles α et β telles que :

$$g(x) = \frac{\alpha}{x^2} + \beta + \underset{x \to 0}{o}(1).$$

- (f) Déterminer aussi $\lim_{x \to +\infty} g(x)$.
- (g) En appliquant le théorème de dérivation terme à terme à la fonction f, démontrer que f est de classe \mathcal{C}^1 sur $]0, +\infty[$ et exprimer f'(x) sous la forme d'une somme.
- (h) Étudier la monotonie de f et de g sur $]0,+\infty[$ et tracer l'allure de leurs graphes.

Exercice 2 (facultatif)

On se propose de démontrer le résultat suivant :

« deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables dans $\mathcal{M}_n(\mathbb{C})$ sont semblables dans $\mathcal{M}_n(\mathbb{R})$ ».

Soit donc A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ semblables dans $\mathcal{M}_n(\mathbb{C})$ et P un élément de $GL_n(\mathbb{C})$ tel que :

$$A = PBP^{-1}.$$

- 1. Montrer qu'il existe (R, J) éléments de $\mathcal{M}_n(\mathbb{R})$ tels que P = R + iJ avec $i^2 = -1$.
- 2. Montrer que, pour tout $t \in \mathbb{C}$, A(R+tJ) = (R+tJ)B.
- 3. Montrer qu'il existe $t_0 \in \mathbb{R}$ tel que $\det(R + t_0 J) \neq 0$.
- 4. En déduire que A et B sont semblables dans $\mathcal{M}_n(\mathbb{R})$.